5 research outputs found

    F.A. Hayek and the mirage of social justice.

    Get PDF

    Delayed Gadolinium-Enhanced MR Imaging of Cartilage (dGEMRIC) following ACL injury

    Get PDF
    SummaryObjectiveEarly detection of glycosaminoglycan (GAG) loss may provide insight into mechanisms of cartilage damage in the anterior cruciate ligament (ACL)-injured patient. We hypothesized that tibial and femoral Delayed Gadolinium-Enhanced MR Imaging of Cartilage (dGEMRIC) indices would be lower in the medial compartment of the ACL-injured knee than in the contralateral, uninjured knee, and that scan order (i.e., whether the injured or the uninjured knee was imaged first) would not affect the indices.Methods15 subjects with unilateral ACL injuries received a double dose of gadolinium [Gd(DTPA)2−] intravenously. After 90min, both knees were sequentially imaged. The injured knee was scanned first in the odd-numbered subjects and second in the even-numbered subjects. The dGEMRIC indices of the median slice of the medial compartment were determined using the MRIMapper software. Index comparisons were made between knee status (ACL-injured vs uninjured), scan order (ACL-injured first vs uninjured first), and cartilage location (tibia vs femur) using a mixed model.ResultsThere was a significant difference in the mean dGEMRIC indices of the medial compartment between injured and uninjured knees (P<0.007). On average, there was a 13% decrease in the dGEMRIC index of the injured knee compared to the uninjured knee. There were no significant effects due to test order (P=0.800) or cartilage location (P=0.439).ConclusionsThe results demonstrate lower GAG concentrations in the medial compartment of the femoral and tibial articular cartilage of the ACL-injured knee when compared to the contralateral uninjured knee. The dGEMRIC indices were not sensitive to scan order; thus, sequential imaging of both knees is possible in this patient population

    Intercropping of wheat and pea as influenced by nitrogen fertilization

    Get PDF
    Abstract The effect of sole and intercropping of field pea (Pisum sativum L.) and spring wheat (Triticum aestivum L.) on crop yield, fertilizer and soil nitrogen (N) use was tested on a sandy loam soil at three levels of urea fertilizer N (0, 4 and 8 g N m À2 ) applied at sowing. The 15 N enrichment and natural abundance techniques were used to determine N accumulation in the crops from the soil, fertilizer and symbiotic N 2 fixation. Intercrops of pea and wheat showed maximum productivity without the supply of N fertilizer. Intercropping increased total dry matter (DM) and N yield, grain DM and N yield, grain N concentration, the proportion of N derived from symbiotic N 2 fixation, and soil N accumulation. With increasing fertilizer N supply, intercropped and sole cropped wheat responded with increased yield, grain N yield and soil N accumulation, whereas the opposite was the case for pea. Fertilizer N enhanced the competitive ability of intercropped wheat recovering up to 90% of the total intercrop fertilizer N acquisition and decreased the proportion of pea in the intercrop, but without influencing the total intercrop grain yield. As a consequence, Land Equivalent Ratios calculated on basis of total DM production decreased from a maximum of 1.34 to as low as 0.85 with increased fertilizer N supply. The study suggests that pea-wheat intercropping is a cropping strategy that use N sources efficiently due to its spatial self-regulating dynamics where pea improve its interspecific competitive ability in areas with lower soil N levels, and vice versa for wheat, paving way for future option to reduce N inputs and negative environmental impacts of agricultural crop production
    corecore