10,244 research outputs found

    Photoproduction of ρ0\rho^0 mesons in ultraperipheral heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider (RHIC) and CERN Large Hadron Collider (LHC)

    Full text link
    We investigate the photoproduction of ρ\rho mesons in ultraperipheral heavy ion collisions at RHIC and LHC energies in the dipole approach and within two phenomenological models based on the the Color Glass Condensate (CGC) formalism. We estimate the integrated cross section and rapidity distribution for meson production and compare our predictions with the data from the STAR collaboration. In particular, we demonstrate that the total cross section at RHIC is strongly dependent on the energy behavior of the dipole-target cross section at low energies, which is not well determined in the dipole approach. In contrast, the predictions at midrapidities at RHIC and in the full rapidity at LHC are under theoretical control and can be used to test the QCD dynamics at high energies.Comment: 6 pages, 5 figures, 1 table. Improved version to be published in Physical Review

    Vector Meson Production in Coherent Hadronic Interactions: An update on predictions for RHIC and LHC

    Full text link
    In this letter we update our predictions for the photoproduction of vector mesons in coherent pppp and AAAA collisions at RHIC and LHC energies using the color dipole approach and the Color Glass Condensate (CGC) formalism. In particular, we present our predictions for the first run of the LHC at half energy and for the rapidity dependence of the ratio between the J/ΨJ/\Psi and ρ\rho cross sections at RHIC energies.Comment: 4 pages, 3 figure

    FCNC in the minimal 3-3-1 model revisited

    Full text link
    We show that in the minimal 3-3-1 model the flavor changing neutral currents (FCNCs) do not impose necessarily strong constraints on the mass of the ZZ^\prime of the model if we also consider the neutral scalar contributions to such processes, like the neutral mesons mass difference and rare semileptonic decays. We first obtain numerical values for all the mixing matrices of the model i.e., the unitary matrices that rotate the left- and right-handed quarks in each charge sector which give the correct mass of all the quarks and the CKM mixing matrix. Then, we find that there is a range of parameters in which the neutral scalar contributions to these processes may interfere with those of the ZZ^\prime, implying this vector boson may be lighter than it has been thought.Comment: Extended version including the effect of a pseudoscalar. 37 pags. and 12 figures. New references added. Version matches the published versio

    Surface-state electron dynamics in noble metals

    Full text link
    Theoretical investigations of surface-state electron dynamics in noble metals are reported. The dynamically screened interaction is computed, within many-body theory, by going beyond a free-electron description of the metal surface. Calculations of the inelastic linewidth of Shockley surface-state electrons and holes in these materials are also presented. While the linewidth of excited holes at the surface-state band edge (k=0{\bf k}_\parallel=0) is dominated by a two-dimensional decay channel, within the surface-state band itself, our calculations indicate that major contributions to the electron-electron interaction of surface-state electrons above the Fermi level come from the underlying bulk electrons.Comment: 17 pages, 7 figures, to appear in Prog. Surf. Sc

    Crystal engineering using functionalized adamantane

    Full text link
    We performed a first principles investigation on the structural, electronic, and optical properties of crystals made of chemically functionalized adamantane molecules. Several molecular building blocks, formed by boron and nitrogen substitutional functionalizations, were considered to build zincblende and wurtzite crystals, and the resulting structures presented large bulk moduli and cohesive energies, wide and direct bandgaps, and low dielectric constants (low-κ\kappa materials). Those properties provide stability for such structures up to room temperature, superior to those of typical molecular crystals. This indicates a possible road map for crystal engineering using functionalized diamondoids, with potential applications ranging from space filling between conducting wires in nanodevices to nano-electro-mechanical systems

    The Higgs decay rate to two photons in a model with two fermiophobic-Higgs doublets

    Full text link
    We consider a three Higgs doublet model with an S3S_3 symmetry in which beside the SM-like doublet there are two fermiophobic doublets. Due to the new charged scalars there is an enhancement in the two-photon decay while the other channels have the same decay widths that the SM neutral Higgs. The fermiophobic scalars are mass degenerated unless soft terms breaking the S3S_3 symmetry are added.Comment: typos were corrected, the figures have been modified and the conclusions were increased. Still contains 15 pages, 2 figure
    corecore