17 research outputs found

    Evolution of green lacewings (Neuroptera: Chrysopidae) : an anchored phylogenomics approach

    Get PDF
    A phylogeny of green lacewings (Neuroptera: Chrysopidae) using anchored hybrid enrichment data is presented. Using this phylogenomic approach, we analysed 137 kb of sequence data (with < 10% missing) for 82 species in 50 genera of Chrysopidae under Bayesian and maximum likelihood criteria. We recovered a strongly supported tree topologically congruent with recently published phylogenies, especially relationships amongst higher‐level groups. The subfamily Nothochrysinae was recovered as paraphyletic, with one clade sister to the rest of Chrysopidae, and the second clade containing the nominal genus (Nothochrysa Navás) as sister to the subfamily Apochrysinae. Chrysopinae was recovered as a monophyletic with the monobasic Nothancylini tribe n. sister to the rest of the subfamily. Leucochrysini was recovered sister to Belonopterygini, and Chrysopini was rendered paraphyletic with respect to Ankylopterygini. Divergence times and diversification estimates indicate a major shift in rate in ancestral Chrysopini at the end of the Cretaceous, and the extensive radiation of Chrysopinae, the numerically dominant clade of green lacewings, began in the Mid‐Paleogene (c. 45 Ma).Table S1. Taxa used in this study, including SRA accession numbers.Table S2. Divergence time estimates (mean ages and ranges) and branch support values for nodes in Figs 2 and S1. PP, posterior probability.Figure S1. Chronogram node numbers and fossils.Figure S2. Maximum likelihood phylogeny of Chrysopidae using AHE data. Bootstrap support values are indicated on nodes and grouped by colour according to value.Figure S3. Nucleotide Astral tree.Figure S4. BAMM plot showing the two most common shift configurations in the credible set. The ‘f’ number corresponds to the proportion of the posterior samples in which this configuration is present.Figure S5. Macroevolutionary cohort matrix for diversifica-tion. Each cell in the matrix is coded by a colour denoting the pairwise probability that two species share a common macroevolutionary rate regime. The maximum clade credi-bility tree is shown for reference in the left and upper margins of each cohort matrix.Figure S6. BAMM rate shift tree showing the overall best fit configuration. Red circles signify placement of shifts.File S1. Chrysopidae Anchored hybrid enrichment alignment. (https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fsyen.12347&file=syen12347-sup-0001-FileS1.txt)File S2. Chrysopidae anchored hybrid enrichment, partition datasets. (https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fsyen.12347&file=syen12347-sup-0002-FileS2.txt)Brazilian National Council for Scientific and Technological Development (209447/2013–3, to JPG), the US National Science Foundation (DEB-1144119, to SLW; DEB-1144162, to MSE; and DEB-0933588, to JDO) and the Beijing Natural Science Foundation (5162016) (to XL).https://onlinelibrary.wiley.com/journal/136531132020-07-01hj2019Zoology and Entomolog

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora

    DUNE Offline Computing Conceptual Design Report

    No full text
    This document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems thatfacilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment

    DUNE Offline Computing Conceptual Design Report

    No full text
    International audienceThis document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems thatfacilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment
    corecore