2 research outputs found

    Waste-polystyrene foams-derived magnetic carbon material for adsorption and redox supercapacitor applications

    Get PDF
    The current impact of plastic waste on the environment and nature pushes for coming up with methods for their efficient reuse and recycle. Expanded polystyrene waste, massively produced worldwide, is presented in this work as a novel precursor of magnetic activated carbons (MAC) for the first time. A simple methodology based on the impregnation of EPS samples with Fe3+ in solution, followed by pyrolysis under Ar pressure and chemical activation is proposed. The as-prepared carbonaceous magnetic materials present nanometric phases of Fe0, Fe3C, and Fe3O4, and showed high specific surface area (672 m2 g−1) and total pore volume (0.35 cm3 g−1), one of the highest found in the carbonaceous magnetic materials literature. Their excellent textural, chemical and electrical properties, combined with the possibility of magnetically collection and regeneration after operation guaranteed an excellent performance of MAC in two different applications: as adsorbents of organic contaminants and as electrodes of redox supercapacitors.The authors would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for the financial support. P.F.R. Ortega acknowledges the FAPEMIG (DOF nº. 2720262/2018). The authors are also grateful to Rede Mineira de Química. R.L. Lavall is recipient of fellowship from CNPq (grant number 313304/2017-3). N. C. F. Machado, K. H. A. Mendes, and L. A. M. de Jesus would like to thank CEFET-MG and FAPEMIG for scholarships receivedPeer reviewe

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore