18,999 research outputs found

    Generalized Non-Commutative Inflation

    Full text link
    Non-commutative geometry indicates a deformation of the energy-momentum dispersion relation f(E)≡Epc(≠1)f(E)\equiv\frac{E}{pc}(\neq 1) for massless particles. This distorted energy-momentum relation can affect the radiation dominated phase of the universe at sufficiently high temperature. This prompted the idea of non-commutative inflation by Alexander, Brandenberger and Magueijo (2003, 2005 and 2007). These authors studied a one-parameter family of non-relativistic dispersion relation that leads to inflation: the α\alpha family of curves f(E)=1+(λE)αf(E)=1+(\lambda E)^{\alpha}. We show here how the conceptually different structure of symmetries of non-commutative spaces can lead, in a mathematically consistent way, to the fundamental equations of non-commutative inflation driven by radiation. We describe how this structure can be considered independently of (but including) the idea of non-commutative spaces as a starting point of the general inflationary deformation of SL(2,C)SL(2,\mathbb{C}). We analyze the conditions on the dispersion relation that leads to inflation as a set of inequalities which plays the same role as the slow roll conditions on the potential of a scalar field. We study conditions for a possible numerical approach to obtain a general one parameter family of dispersion relations that lead to successful inflation.Comment: Final version considerably improved; Non-commutative inflation rigorously mathematically formulate

    A conceptual problem for non-commutative inflation and the new approach for non-relativistic inflationary equation of state

    Full text link
    In a previous paper, we connected the phenomenological non-commutative inflation of Alexander, Brandenberger and Magueijo (2003) and Koh S and Brandenberger (2007) with the formal representation theory of groups and algebras and analyzed minimal conditions that the deformed dispersion relation should satisfy in order to lead to a successful inflation. In that paper, we showed that elementary tools of algebra allow a group like procedure in which even Hopf algebras (roughly the symmetries of non-commutative spaces) could lead to the equation of state of inflationary radiation. In this paper, we show that there exists a conceptual problem with the kind of representation that leads to the fundamental equations of the model. The problem comes from an incompatibility between one of the minimal conditions for successful inflation (the momentum of individual photons is bounded from above) and the group structure of the representation which leads to the fundamental inflationary equations of state. We show that such a group structure, although mathematically allowed, would lead to problems with the overall consistency of physics, like in scattering theory, for example. Therefore, it follows that the procedure to obtain those equations should be modified according to one of two possible proposals that we consider here. One of them relates to the general theory of Hopf algebras while the other is based on a representation theorem of Von Neumann algebras, a proposal already suggested by us to take into account interactions in the inflationary equation of state. This reopens the problem of finding inflationary deformed dispersion relations and all developments which followed the first paper of Non-commutative Inflation.Comment: Phys. Rev. D, 2013, in pres

    A Brief Review on Syntheses, Structures and Applications of Nanoscrolls

    Get PDF
    Nanoscrolls are papyrus-like nanostructures which present unique properties due to their open ended morphology. These properties can be exploited in a plethora of technological applications, leading to the design of novel and interesting devices. During the past decade, significant advances in the synthesis and characterization of these structures have been made, but many challenges still remain. In this mini review we provide an overview on their history, experimental synthesis methods, basic properties and application perspectives

    UEFI BIOS Accessibility for the Visually Impaired

    Full text link
    People with some kind of disability face a high level of difficulty for everyday tasks because, in many cases, accessibility was not considered necessary when the task or process was designed. An example of this scenario is a computer's BIOS configuration screens, which do not consider the specific needs, such as screen readers, of visually impaired people. This paper proposes the idea that it is possible to make the pre-operating system environment accessible to visually impaired people. We report our work-in-progress in creating a screen reader prototype, accessing audio cards compatible with the High Definition Audio specification in systems running UEFI compliant firmware.Comment: 6 page

    Quantum signatures in quadratic optomechanics

    Full text link
    We analyze quantum effects occurring in optomechanical systems where the coupling between an optical mode and a mechanical mode is quadratic in displacement (membrane-in-the-middle geometry). We show that it is possible to observe quantum effects in these systems without achieving the single-photon strong coupling regime. We find that zero-point energy causes a mechanical frequency shift, and we propose an experimental way to measure it. Further, we show that it is possible to determine the phonon statistics from the cavity transmission, and propose a way to infer the resonator's temperature based on this feature. For completeness, we revisit the case of an isolated system and show that different types of mechanical quantum states can be created, depending on the initial cavity state. In this situation, mechanical motion undergoes collapse and revivals, and we compute the collapse and revival times, as well as the degree of squeezing.Comment: 7 pages, 6 figures, 2nd versio

    The central spheroids of Milky Way mass-sized galaxies

    Get PDF
    Indexación: Scopus.PBT, DM and AM acknowledge partial support from the Nucleo UNAB 2015 DI-677-15/N of Universidad Andres Bello. PBT acknowledges partial support from Fondecyt Regular 1150334 and the Southern Astrophysics Network (SAN) collaboration funded by Conicyt, and PICT 2011-0959 and PIP 2012-0396 (Mincyt, Argentina). DM and MZ are supported by the BASAL Center for Astrophysics and Associated Technologies (CATA) through grant PFB-06, and the Ministry for the Economy, Development, and Tourism, Programa Iniciativa Cientifica Milenio through grant IC120009, awarded to the Millennium Institute of Astrophysics (MAS), and by FONDECYT Regular grant No. 1130196. DC and TCB acknowledge partial support for this work from grant PHY 14-30152; Physics Frontier Center/JINA Center for the Evolution of the Elements (JINA-CEE), awarded by the US National Science Foundation. REGM acknowledges support from Ci?ncia sem Fronteiras (CNPq, Brazil).We study the properties of the central spheroids located within 10 kpc of the centre of mass of MilkyWay mass-sized galaxies simulated in a cosmological context. The simulated central regions are dominated by stars older than 10 Gyr, mostly formed in situ, with a contribution of ~30 per cent from accreted stars. These stars formed in well-defined starbursts, although accreted stars exhibit sharper and earlier ones. The fraction of accreted stars increases with galactocentric distance, so that at a radius of~8-10 kpc, a fraction of~40 per cent, on average, is detected. Accreted stars are slightly younger, lower metallicity, and more α-enhanced than in situ stars. A significant fraction of old stars in the central regions come from a few (2-3) massive satellites (~1010M⊙). The bulge components receive larger contributions of accreted stars formed in dwarfs smaller than ~109.5M⊙. The difference between the distributions of ages and metallicities of old stars is thus linked to the accretion histories - those central regions with a larger fraction of accreted stars are those with contributions from more massive satellites. The kinematical properties of in situ and accreted stars are consistent with the latter being supported by their velocity dispersions, while the former exhibit clear signatures of rotational support. Our simulations demonstrate a range of characteristics, with some systems exhibiting a co-existing bar and spheroid in their central regions, resembling in some respect the central region of the Milky Way. © 2016 The Authors.https://academic.oup.com/mnras/article/473/2/1656/422260

    N-Relaxion: Large Field Excursions from a Few Site Relaxion Model

    Full text link
    Relaxion models are an interesting new avenue to explain the radiative stability of the Standard Model scalar sector. They require very large field excursions, which are difficult to generate in a consistent UV completion and to reconcile with the compact field space of the relaxion. We propose an N-site model which naturally generates the large decay constant needed to address these issues. Our model offers distinct advantages with respect to previous proposals: the construction involves non-abelian fields, allowing for controlled high energy behaviour and more model building possibilities, both in particle physics and inflationary models, and also admits a continuum limit when the number of sites is large, which may be interpreted as a warped extra dimension.Comment: 7 pages, 2 figures; v2: version to appear in PR
    • …
    corecore