49 research outputs found

    Accelerated Echo Planer J-resolved Spectroscopic Imaging of Putamen and Thalamus in Obstructive Sleep Apnea

    No full text
    Obstructive sleep apnea syndrome (OSAS) leads to neurocognitive and autonomic deficits that are partially mediated by thalamic and putamen pathology. We examined the underlying neurochemistry of those structures using compressed sensing-based 4D echo-planar J-resolved spectroscopic imaging (JRESI), and quantified values with prior knowledge fitting. Bilaterally increased thalamic mI/Cr, putamen Glx/Cr, and Glu/Cr, and bilaterally decreased thalamic and putamen tCho/Cr and GABA/Cr occurred in OSAS vs healthy subjects (p < 0.05). Increased right thalamic Glx/Cr, Glu/Cr, Gln/Cr, Asc/Cr, and decreased GPC/Cr and decreased left thalamic tNAA/Cr, NAA/Cr were detected. The right putamen showed increased mI/Cr and decreased tCho/Cr, and the left, decreased PE/Cr ratio. ROC curve analyses demonstrated 60–100% sensitivity and specificity for the metabolite ratios in differentiating OSAS vs. controls. Positive correlations were found between: left thalamus mI/Cr and baseline oxygen saturation (SaO(2)); right putamen tCho/Cr and apnea hypopnea index; right putamen GABA/Cr and baseline SaO(2); left putamen PE/Cr and baseline SaO(2); and left putamen NAA/Cr and SaO(2) nadir (all p < 0.05). Negative correlations were found between left putamen PE/Cr and SaO(2) nadir. These findings suggest underlying inflammation or glial activation, with greater alterations accompanying lower oxygen saturation. These metabolite levels may provide biomarkers for future neurochemical interventions by pharmacologic or other means

    Heart Rate Responses to Autonomic Challenges in Obstructive Sleep Apnea

    Get PDF
    Obstructive sleep apnea (OSA) is accompanied by structural alterations and dysfunction in central autonomic regulatory regions, which may impair dynamic and static cardiovascular regulation, and contribute to other syndrome pathologies. Characterizing cardiovascular responses to autonomic challenges may provide insights into central nervous system impairments, including contributions by sex, since structural alterations are enhanced in OSA females over males. The objective was to assess heart rate responses in OSA versus healthy control subjects to autonomic challenges, and, separately, characterize female and male patterns. We studied 94 subjects, including 37 newly-diagnosed, untreated OSA patients (6 female, age mean±std: 52.1±8.1 years; 31 male aged 54.3±8.4 years), and 57 healthy control subjects (20 female, 50.5±8.1 years; 37 male, 45.6±9.2 years). We measured instantaneous heart rate with pulse oximetry during cold pressor, hand grip, and Valsalva maneuver challenges. All challenges elicited significant heart rate differences between OSA and control groups during and after challenges (repeated measures ANOVA, p<0.05). In post-hoc analyses, OSA females showed greater impairments than OSA males, which included: for cold pressor, lower initial increase (OSA vs. control: 9.5 vs. 7.3 bpm in females, 7.6 vs. 3.7 bpm in males), OSA delay to initial peak (2.5 s females/0.9 s males), slower mid-challenge rate-of-increase (OSA vs. control: −0.11 vs. 0.09 bpm/s in females, 0.03 vs. 0.06 bpm/s in males); for hand grip, lower initial peak (OSA vs. control: 2.6 vs. 4.6 bpm in females, 5.3 vs. 6.0 bpm in males); for Valsalva maneuver, lower Valsalva ratio (OSA vs. control: 1.14 vs. 1.30 in females, 1.29 vs. 1.34 in males), and OSA delay during phase II (0.68 s females/1.31 s males). Heart rate responses showed lower amplitude, delayed onset, and slower rate changes in OSA patients over healthy controls, and impairments may be more pronounced in females. The dysfunctions may reflect central injury in the syndrome, and suggest autonomic deficiencies that may contribute to further tissue and functional pathologies
    corecore