23 research outputs found

    Plasma neurofilament light chain: an early biomarker for hereditary ATTR amyloid polyneuropathy

    Get PDF
    BACKGROUND: Transthyretin amyloidosis due to V30M mutation (ATTR-V30M) is the most frequent hereditary ATTR amyloidosis. Besides neurophysiological measures, there are no biomarkers to detect preclinical disease or monitor disease progression. CSF or plasma neurofilament light chain (pNfL) have recently been considered sensitive biomarkers to quantitate neuro-axonal damage in several disorders of the peripheral and central nervous system. OBJECTIVE: Characterise plasma NfL levels in a series of untreated ATTR-V30M patients stratified by clinical severity using a cross-sectional retrospective study design. METHODS: Sixty ATTR-V30M patients and 16 controls from 2 independent cohorts were analysed for pNfL by single-molecule array assay (SIMOA) technique. Disease severity was assessed with Polyneuropathy Disability Score. RESULTS: pNfL is elevated in ATTR-V30M patients as a function of disease severity in both cohorts. Moreover, pNfL discriminates asymptomatic mutation carriers from early symptomatic patients (AUC = 0.97; p 66.9 pg/mL) also discriminates patients with sensory neuropathy from patients with motor neuropathy (AUC = 0.91; p < .01) with a sensitivity of 61.5% and a specificity of 92.3%. CONCLUSION: pNfL is an easily accessible biomarker to establish ATTR-V30M disease conversion and to monitor disease progression. pNfL could be used as efficacy measure of disease-oriented therapies in clinical and pre-clinical trials

    Changes in serum neurofilament light chain levels following narrowband ultraviolet B phototherapy in clinically isolated syndrome

    Get PDF
    Objective To determine whether serum neurofilament light chain (sNfL) levels are suppressed in patients with the clinically isolated syndrome (CIS) following narrowband ultraviolet B phototherapy (UVB-PT). Methods sNfL levels were measured using a sensitive single-molecule array assay at baseline and up to 12 months in 17 patients with CIS, 10 of whom received UVB-PT, and were compared with healthy control (HC) and early relapsing remitting multiple sclerosis (RRMS) group. sNfL levels were correlated with magnetic resonance imaging total lesion volume (LV) determined using icobrain version 4.4.1 and with clinical outcomes. Results Baseline median sNfL levels were significantly higher in the CIS (20.6 pg/mL, interquartile range [IQR] 13.7–161.4) and RRMS groups (36.6 pg/ml [IQR] 16.2–212.2) than in HC (10.7 pg/ml [IQR] 4.9–21.5) (p = .012 and p = .0002, respectively), and were strongly correlated with T2 and T1 LV at 12 months (r = .800; p = .014 and r = .833; p = .008, respectively) in the CIS group. Analysis of changes in sNfL levels over time in the CIS group showed a significant cumulative suppressive effect of UVB-PT in the first 3 months (UVB-PT −10.6% vs non-UVB-PT +58.3%; p = .04) following which the levels in the two groups converged and continued to fall. Conclusions Our findings provide the basis for further studies to determine the utility of sNfL levels as a marker of neuro-axonal damage in CIS and early MS and for assessing the efficacy of new therapeutic interventions such as UVB-PT

    Complement Activation Is Associated With Disease Severity in Multiple Sclerosis.

    Get PDF
    BACKGROUND AND OBJECTIVES Histopathologic studies have identified immunoglobulin (Ig) deposition and complement activation as contributors of CNS tissue damage in multiple sclerosis (MS). Intrathecal IgM synthesis is associated with higher MS disease activity and severity, and IgM is the strongest complement-activating immunoglobulin. In this study, we investigated whether complement components (CCs) and complement activation products (CAPs) are increased in persons with MS, especially in those with an intrathecal IgM synthesis, and whether they are associated with disease severity and progression. METHODS CC and CAP levels were quantified in plasma and CSF of 112 patients with clinically isolated syndrome (CIS), 127 patients with MS (90 relapsing-remitting, 14 primary progressive, and 23 secondary progressive), 31 inflammatory neurologic disease, and 44 symptomatic controls from the Basel CSF databank study. Patients with CIS/MS were followed in the Swiss MS cohort study (median 6.3 years). Levels of CC/CAP between diagnosis groups were compared; in CIS/MS, associations of CC/CAP levels with intrathecal Ig synthesis, baseline Expanded Disability Status Scale (EDSS) scores, MS Severity Score (MSSS), and neurofilament light chain (NfL) levels were investigated by linear regression, adjusted for age, sex, and albumin quotient. RESULTS CSF (but not plasma) levels of C3a, C4a, Ba, and Bb were increased in patients with CIS/MS, being most pronounced in those with an additional intrathecal IgM production. In CIS, doubling of C3a and C4a in CSF was associated with 0.31 (CI 0.06-0.56; p = 0.016) and 0.32 (0.02-0.62; p = 0.041) increased EDSS scores at lumbar puncture. Similarly, doubling of C3a and Ba in CIS/MS was associated with 0.61 (0.19-1.03; p < 0.01) and 0.74 (0.18-1.31; p = 0.016) increased future MSSS. In CIS/MS, CSF levels of C3a, C4a, Ba, and Bb were associated with increased CSF NfL levels, e.g., doubling of C3a was associated with an increase of 58% (Est. 1.58; CI 1.37-1.81; p < 0.0001). DISCUSSION CNS-compartmentalized activation of the classical and alternative pathways of complement is increased in CIS/MS and associated with the presence of an intrathecal IgM production. Increased complement activation within the CSF correlates with EDSS, future MSSS, and NfL levels, supporting the concept that complement activation contributes to MS pathology and disease progression. Complement inhibition should be explored as therapeutic target to attenuate disease severity and progression in MS

    Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study

    Get PDF
    Background: Serum neurofilament light chain (sNfL) is a biomarker of neuronal damage that is used not only to monitor disease activity and response to drugs and to prognosticate disease course in people with multiple sclerosis on the group level. The absence of representative reference values to correct for physiological age-dependent increases in sNfL has limited the diagnostic use of this biomarker at an individual level. We aimed to assess the applicability of sNfL for identification of people at risk for future disease activity by establishing a reference database to derive reference values corrected for age and body-mass index (BMI). Furthermore, we used the reference database to test the suitability of sNfL as an endpoint for group-level comparison of effectiveness across disease-modifying therapies. Methods: For derivation of a reference database of sNfL values, a control group was created, comprising participants with no evidence of CNS disease taking part in four cohort studies in Europe and North America. We modelled the distribution of sNfL concentrations in function of physiological age-related increase and BMI-dependent modulation, to derive percentile and Z score values from this reference database, via a generalised additive model for location, scale, and shape. We tested the reference database in participants with multiple sclerosis in the Swiss Multiple Sclerosis Cohort (SMSC). We compared the association of sNfL Z scores with clinical and MRI characteristics recorded longitudinally to ascertain their respective disease prognostic capacity. We validated these findings in an independent sample of individuals with multiple sclerosis who were followed up in the Swedish Multiple Sclerosis registry. Findings: We obtained 10 133 blood samples from 5390 people (median samples per patient 1 [IQR 1–2] in the control group). In the control group, sNfL concentrations rose exponentially with age and at a steeper increased rate after approximately 50 years of age. We obtained 7769 samples from 1313 people (median samples per person 6·0 [IQR 3·0–8·0]). In people with multiple sclerosis from the SMSC, sNfL percentiles and Z scores indicated a gradually increased risk for future acute (eg, relapse and lesion formation) and chronic (disability worsening) disease activity. A sNfL Z score above 1·5 was associated with an increased risk of future clinical or MRI disease activity in all people with multiple sclerosis (odds ratio 3·15, 95% CI 2·35–4·23; p<0·0001) and in people considered stable with no evidence of disease activity (2·66, 1·08–6·55; p=0·034). Increased Z scores outperformed absolute raw sNfL cutoff values for diagnostic accuracy. At the group level, the longitudinal course of sNfL Z score values in people with multiple sclerosis from the SMSC decreased to those seen in the control group with use of monoclonal antibodies (ie, alemtuzumab, natalizumab, ocrelizumab, and rituximab) and, to a lesser extent, oral therapies (ie, dimethyl fumarate, fingolimod, siponimod, and teriflunomide). However, longitudinal sNfL Z scores remained elevated with platform compounds (interferons and glatiramer acetate; p<0·0001 for the interaction term between treatment category and treatment duration). Results were fully supported in the validation cohort (n=4341) from the Swedish Multiple Sclerosis registry. Interpretation: The use of sNfL percentiles and Z scores allows for identification of individual people with multiple sclerosis at risk for a detrimental disease course and suboptimal therapy response beyond clinical and MRI measures, specifically in people with disease activity-free status. Additionally, sNfL might be used as an endpoint for comparing effectiveness across drug classes in pragmatic trials. Funding: Swiss National Science Foundation, Progressive Multiple Sclerosis Alliance, Biogen, Celgene, Novartis, Roche

    Baseline Inflammatory Status Reveals Dichotomic Immune Mechanisms Involved In Primary-Progressive Multiple Sclerosis Pathology

    Full text link
    To ascertain the role of inflammation in the response to ocrelizumab in primary-progressive multiple sclerosis (PPMS).Multicenter prospective study including 69 patients with PPMS who initiated ocrelizumab treatment, classified according to baseline presence [Gd+, n=16] or absence [Gd-, n=53] of gadolinium-enhancing lesions in brain MRI. Ten Gd+ (62.5%) and 41 Gd- patients (77.4%) showed non-evidence of disease activity (NEDA) defined as no disability progression or new MRI lesions after 1 year of treatment. Blood immune cell subsets were characterized by flow cytometry, serum immunoglobulins by nephelometry, and serum neurofilament light-chains (sNfL) by SIMOA. Statistical analyses were corrected with the Bonferroni formula.More than 60% of patients reached NEDA after a year of treatment, regardless of their baseline characteristics. In Gd+ patients, it associated with a low repopulation rate of inflammatory B cells accompanied by a reduction of sNfL values 6 months after their first ocrelizumab dose. Patients in Gd- group also had low B cell numbers and sNfL values 6 months after initiating treatment, independent of their treatment response. In these patients, NEDA status was associated with a tolerogenic remodeling of the T and innate immune cell compartments, and with a clear increase of serum IgA levels.Baseline inflammation influences which immunological pathways predominate in patients with PPMS. Inflammatory B cells played a pivotal role in the Gd+ group and inflammatory T and innate immune cells in Gd- patients. B cell depletion can modulate both mechanisms.Copyright © 2022 FernĂĄndez-Velasco, Monreal, Kuhle, Meca-Lallana, Meca-Lallana, Izquierdo, Oreja-Guevara, GascĂłn-GimĂ©nez, Sainz de la Maza, Walo-Delgado, Lapuente-Suanzes, Maceski, RodrĂ­guez-MartĂ­n, RoldĂĄn, Villarrubia, Saiz, Blanco, Diaz-PĂ©rez, Valero-LĂłpez, Diaz-Diaz, Aladro, Brieva, ĂĂ±iguez, GonzĂĄlez-SuĂĄrez, RodrĂ­guez de Antonio, GarcĂ­a-DomĂ­nguez, Sabin, Llufriu, Masjuan, Costa-Frossard and Villar

    Serum neurofilament light and tau as prognostic markers for all-cause mortality in the elderly general population—an analysis from the MEMO study.

    No full text
    Background: Neurofilament light chain (NfL) is a cytoskeletal protein component whose release into blood is indicative of neuronal damage. Tau is a microtubule-associated protein in neurons and strongly associated with overall brain degeneration. NfL and tau levels are associated with mortality in different neurological diseases, but studies in the general population are missing. We investigated whether NfL and tau serum levels could serve as prognostic markers for overall mortality in elderly individuals without pre-defined neurological conditions. Further, we investigated the cross-sectional associations between NfL, tau, neuropsychological functioning, and brain structures. Methods: In 1997, 385 inhabitants of Augsburg who were aged 65 years and older were included in the Memory and Morbidity in Augsburg Elderly (MEMO) study. They participated in a face-to-face medical interview including neuropsychological tests and magnetic resonance imaging (MRI) of the brain. NfL and tau were measured from non-fasting blood samples using highly sensitive single molecule array assays. To assess the prognostic accuracy of the biomarkers, concordance statistics based on the predicted 5-year survival probabilities were calculated for different Cox regression models. Associations between the biomarkers and the neuropsychological test scores or brain structures were investigated using linear or logistic regression. Results: NfL (HR 1.27, 95% CI [1.14–1.42]) and tau (1.20 [1.07–1.35]) serum levels were independently associated with all-cause mortality. NfL, but not tau, increased the prognostic accuracy when added to a model containing sociodemographic characteristics (concordance statistic 0.684 [0.612–0.755] vs. 0.663 [0.593–0.733]), but not when added to a model containing sociodemographic characteristics and brain atrophy or neuropsychological test scores. NfL serum levels were cross-sectionally associated with neuropsychological test scores and brain structures. Conclusions: The association between NfL serum levels and brain atrophy and neuropsychological performance in individuals without overt neurological disease is similar to that seen in patients with neurodegenerative diseases. These findings support the concept of a continuum of physiological aging and incipient, subclinical pathology, and manifest disease. NfL, but not tau, serum levels might serve as a prognostic marker for all-cause mortality if no other clinical information is available

    Serum neurofilament light chain as a reliable biomarker of hereditary transthyretin-related amyloidosis - A Swiss reference center experience.

    No full text
    Hereditary transthyretin-related (hATTR) amyloidosis is a rare disease, causing a disabling and life-threatening axonal length-dependent polyneuropathy. Monitoring of disease progression and treatment response is difficult. We aimed to determine if serum neurofilament light chain (sNfL) is a reliable and early biomarker of peripheral neuropathy in hATTR amyloidosis. We prospectively included 20 hATTR patients, 14 symptomatic and 6 asymptomatic. Patients were assessed at baseline and one year, including a full clinical examination with disease severity and functional scores, electrochemical skin conductance measurement with SudoscanÂź and nerve conduction studies, and sNfL level. hATTR patient sNfL were also compared with sNfL of 4532 healthy controls of a reference database by calculating age and BMI adjusted Z scores. At baseline, median sNfL concentration was 3.6-fold higher in symptomatic than asymptomatic hATTR patients (p=0.003), and this difference was also found in our under 60-years-old patients (p=0.003). There was no significant difference of sNfL concentration between asymptomatic patients and healthy controls (Z-score of -0.29), but a significant difference between symptomatic patients and healthy controls (Z-score of 2.52). We found a significant correlation between sNfL levels and most clinical and electrophysiological disease severity scores, the strongest correlation being with the NIS score. sNfL seems to be a reliable biomarker of peripheral neuropathy severity in hATTR amyloidosis and can distinguish between asymptomatic and symptomatic patients. sNfL could also become a reliable biomarker to establish disease onset and treatment response. This article is protected by copyright. All rights reserved

    Plasma neurofilament light chain: an early biomarker for hereditary ATTR amyloid polyneuropathy

    No full text
    Background: Transthyretin amyloidosis due to V30M mutation (ATTR-V30M) is the most frequent hereditary ATTR amyloidosis. Besides neurophysiological measures, there are no biomarkers to detect preclinical disease or monitor disease progression. CSF or plasma neurofilament light chain (pNfL) have recently been considered sensitive biomarkers to quantitate neuro-axonal damage in several disorders of the peripheral and central nervous system. Objective: Characterise plasma NfL levels in a series of untreated ATTR-V30M patients stratified by clinical severity using a cross-sectional retrospective study design. Methods: Sixty ATTR-V30M patients and 16 controls from 2 independent cohorts were analysed for pNfL by single-molecule array assay (SIMOA) technique. Disease severity was assessed with Polyneuropathy Disability Score. Results: pNfL is elevated in ATTR-V30M patients as a function of disease severity in both cohorts. Moreover, pNfL discriminates asymptomatic mutation carriers from early symptomatic patients (AUC = 0.97; p 66.9 pg/mL) also discriminates patients with sensory neuropathy from patients with motor neuropathy (AUC = 0.91; p <.01) with a sensitivity of 61.5% and a specificity of 92.3%. Conclusion: pNfL is an easily accessible biomarker to establish ATTR-V30M disease conversion and to monitor disease progression. pNfL could be used as efficacy measure of disease-oriented therapies in clinical and pre-clinical trials

    Serum neurofilament light chain at time of diagnosis is an independent prognostic factor of survival in amyotrophic lateral sclerosis

    No full text
    International audienceBackground and purpose: The prognostic value of serum neurofilament light chain (sNfL), a biomarker of neurodegeneration, compared to other prognos-tic factors of amyotrophic lateral sclerosis (ALS) at the time of diagnosis, remains unclear. Methods: Sera from ALS patients were prospectively collected at the first diagnostic visit in our centre. sNfL levels were determined by single molecule array in 207 ALS patients and in 21 healthy controls. The prognostic value of sNfL was compared with that of other known clinical prognostic factors using a Cox regression model and multivariate analysis. Results: Serum neurofilament light chain levels were higher in ALS patients than in controls (P < 0.0001). Seven parameters were predictive of death in ALS: older age, bulbar onset, higher ALS Functional Rating Scale revised (ALSFRS-R) score, greater weight loss, lower maximal inspiratory pressure, forced vital capacity and higher sNfL levels. A Cox regression model showed that sNfL (P < 0.0001), weight loss (P = 0.040) and site at onset (P = 0.048) were independent predictive factors of death. In a sub-cohort restricted to 139 patients with complete spirometry data, sNfL level (P < 0.005) and forced vital capacity (P = 0.022) were independent factors predictive of death. In a subgroup of 142 patients in whom ALSFRS-R score was available at several time points, sNfL levels positively correlated with ALSFRS-R rate of decline (r = 0.571, P < 10 À12). Conclusions: Higher sNfL concentration is a strong and independent prognos-tic factor of death in ALS as early as the time of diagnosis
    corecore