147 research outputs found

    Holographic quenches and anomalous transport

    Get PDF
    We study the response of the chiral magnetic effect due to continuous quenches induced by time dependent electric fields within holography. Concretely, we consider a holographic model with dual chiral anomaly and compute the electric current parallel to a constant, homogeneous magnetic field and a time dependent electric field in the probe approximation. We explicitly solve the PDEs by means of pseudospectral methods in spatial and time directions and study the transition to an universal "fast" quench response. Moreover, we compute the amplitudes, i.e.,~residues of the quasi normal modes, by solving the (ODE) Laplace transformed equations. We investigate the possibility of considering the asymptotic growth rate of the amplitudes as a well defined notion of initial time scale for linearized systems. Finally, we highlight the existence of Landau level resonances in the electrical conductivity parallel to a magnetic field at finite frequency and show explicitly that these only appear in presence of the anomaly. We show that the existence of these resonances induces, among others, a long-lived AC electric current once the electric field is switched off.Comment: 34 pages, 10 figure

    Gravitational wave recoil in Robinson-Trautman spacetimes

    Full text link
    We consider the gravitational recoil due to non-reflection-symmetric gravitational wave emission in the context of axisymmetric Robinson-Trautman spacetimes. We show that regular initial data evolve generically into a final configuration corresponding to a Schwarzschild black-hole moving with constant speed. For the case of (reflection-)symmetric initial configurations, the mass of the remnant black-hole and the total energy radiated away are completely determined by the initial data, allowing us to obtain analytical expressions for some recent numerical results that have been appeared in the literature. Moreover, by using the Galerkin spectral method to analyze the non-linear regime of the Robinson-Trautman equations, we show that the recoil velocity can be estimated with good accuracy from some asymmetry measures (namely the first odd moments) of the initial data. The extension for the non-axisymmetric case and the implications of our results for realistic situations involving head-on collision of two black holes are also discussed.Comment: 9 pages, 6 figures, final version to appear in PR

    Black-hole horizons as probes of black-hole dynamics I: post-merger recoil in head-on collisions

    Full text link
    The understanding of strong-field dynamics near black-hole horizons is a long-standing and challenging prob- lem in general relativity. Recent advances in numerical relativity and in the geometric characterization of black- hole horizons open new avenues into the problem. In this first paper in a series of two, we focus on the analysis of the recoil occurring in the merger of binary black holes, extending the analysis initiated in [1] with Robinson- Trautman spacetimes. More specifically, we probe spacetime dynamics through the correlation of quantities defined at the black-hole horizon and at null infinity. The geometry of these hypersurfaces responds to bulk gravitational fields acting as test screens in a scattering perspective of spacetime dynamics. Within a 3 + 1 approach we build an effective-curvature vector from the intrinsic geometry of dynamical-horizon sections and correlate its evolution with the flux of Bondi linear momentum at large distances. We employ this setup to study numerically the head-on collision of nonspinning black holes and demonstrate its validity to track the qualita- tive aspects of recoil dynamics at infinity. We also make contact with the suggestion that the antikick can be described in terms of a "slowness parameter" and how this can be computed from the local properties of the horizon. In a companion paper [2] we will further elaborate on the geometric aspects of this approach and on its relation with other approaches to characterize dynamical properties of black-hole horizons.Comment: final version published on PR

    Black-hole horizons as probes of black-hole dynamics II: geometrical insights

    Full text link
    In a companion paper [1], we have presented a cross-correlation approach to near-horizon physics in which bulk dynamics is probed through the correlation of quantities defined at inner and outer spacetime hypersurfaces acting as test screens. More specifically, dynamical horizons provide appropriate inner screens in a 3+1 setting and, in this context, we have shown that an effective-curvature vector measured at the common horizon produced in a head-on collision merger can be correlated with the flux of linear Bondi-momentum at null infinity. In this paper we provide a more sound geometric basis to this picture. First, we show that a rigidity property of dynamical horizons, namely foliation uniqueness, leads to a preferred class of null tetrads and Weyl scalars on these hypersurfaces. Second, we identify a heuristic horizon news-like function, depending only on the geometry of spatial sections of the horizon. Fluxes constructed from this function offer refined geometric quantities to be correlated with Bondi fluxes at infinity, as well as a contact with the discussion of quasi-local 4-momentum on dynamical horizons. Third, we highlight the importance of tracking the internal horizon dual to the apparent horizon in spatial 3-slices when integrating fluxes along the horizon. Finally, we discuss the link between the dissipation of the non-stationary part of the horizon's geometry with the viscous-fluid analogy for black holes, introducing a geometric prescription for a "slowness parameter" in black-hole recoil dynamics.Comment: Final version published on PR

    A Weyl's law for black holes

    Full text link
    We discuss a Weyl's law for the quasi-normal modes of black holes that recovers the structural features of the standard Weyl's law for the eigenvalues of the Laplacian in compact regions. Specifically, the asymptotics of the counting function N(ω)N(\omega) of quasi-normal modes of (d+1)(d+1)-dimensional black holes follows a power-law N(ω)∼VoldeffωdN(\omega)\sim \mathrm{Vol}_d^{\mathrm{eff}}\omega^d, with Voldeff\mathrm{Vol}_d^{\mathrm{eff}} an effective volume determined by the light-trapping and decay properties of the black hole geometry. Closed forms are presented for the Schwarzschild black hole and a quasi-normal mode Weyl's law is proposed for generic black holes. As an application, such Weyl's law could provide a probe into the effective dimensionality of spacetime and the relevant resonant scales of actual astrophysical black holes, upon the counting of sufficiently many overtones in the observed ringdown signal of binary black hole mergers.Comment: 12 pages, 4 figures, preliminary versio
    • …
    corecore