36 research outputs found

    Biology, Fishery, Conservation and Management of Indian Ocean Tuna Fisheries

    Get PDF
    The focus of the study is to explore the recent trend of the world tuna fishery with special reference to the Indian Ocean tuna fisheries and its conservation and sustainable management. In the Indian Ocean, tuna catches have increased rapidly from about 179959 t in 1980 to about 832246 t in 1995. They have continued to increase up to 2005; the catch that year was 1201465 t, forming about 26% of the world catch. Since 2006 onwards there has been a decline in the volume of catches and in 2008 the catch was only 913625 t. The Principal species caught in the Indian Ocean are skipjack and yellowfin. Western Indian Ocean contributed 78.2% and eastern Indian Ocean 21.8% of the total tuna production from the Indian Ocean. The Indian Ocean stock is currently overfished and IOTC has made some recommendations for management regulations aimed at sustaining the tuna stock. Fishing operations can cause ecological impacts of different types: by catches, damage of the habitat, mortalities caused by lost or discarded gear, pollution, generation of marine debris, etc. Periodic reassessment of the tuna potential is also required with adequate inputs from exploratory surveys as well as commercial landings and this may prevent any unsustainable trends in the development of the tuna fishing industry in the Indian Ocean

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Monitoring global rates of biodiversity change: challenges that arise in meeting the Convention on Biological Diversity (CBD) 2010 goals

    No full text
    By agreeing to strive for ‘a significant reduction in the current rate of loss of biological diversity’ by the year 2010, political leaders at the 2002 World Summit on Sustainable Development (held in Johannesburg, South Africa) presented conservation scientists with a great opportunity, but also one of their most significant challenges. This is an extremely exciting and laudable development, but this reporting process could be made yet more powerful if it incorporates, from the outset, independent scientific assessment of the measures, how they are analysed, and practical ways of plugging key gaps. This input is crucial if the measures are to be widely owned, credible and robust to the vigorous external scrutiny to which they will doubtless be exposed. Assessing how rates of biodiversity loss have changed from current levels by 2010 will require that a given attribute has been measured at least three times; however, most habitats, species, populations and ecosystem services have not been assessed even once. Furthermore, the best data on which to base estimates of biodiversity loss are biased towards the charismatic vertebrate species; unfortunately, these supply minimal services to the human economy. We have to find ways to redress this taxonomic imbalance and expand our analyses to consider the vast diversity of invertebrate, fungal and microbial species that play a role in determining human health and economic welfare. In the first part of this paper I will use examples from local and regional monitoring of biological diversity to examine the desired properties of ‘ideal indicators’. I will then change focus and examine an initial framework that asks how we might monitor changes in the economic goods and services provided by natural ecosystems. I will use this exercise to examine how the set of possible indicators given by the Convention on Biological Diversity might be modified in ways that provide a more critical assay of the economic value of biological diversity. Here I will emphasize that we need not only to monitor these benefits, but also to significantly increase public awareness of human dependence upon the role that non-voting species play in driving the world's financial economy

    Biology of extinction risk in marine fishes

    No full text
    We review interactions between extrinsic threats to marine fishes and intrinsic aspects of their biology that determine how populations and species respond to those threats. Information is available on the status of less than 5% of the world's approximately 15 500 marine fish species, most of which are of commercial importance. By 2001, based on data from 98 North Atlantic and northeast Pacific populations, marine fishes had declined by a median 65% in breeding biomass from known historic levels; 28 populations had declined by more than 80%. Most of these declines would be sufficient to warrant a status of threatened with extinction under international threat criteria. However, this interpretation is highly controversial, in part because of a perception that marine fishes have a suite of life history characteristics, including high fecundity and large geographical ranges, which might confer greater resilience than that shown by terrestrial vertebrates. We review 15 comparative analyses that have tested for these and other life history correlates of vulnerability in marine fishes. The empirical evidence suggests that large body size and late maturity are the best predictors of vulnerability to fishing, regardless of whether differences among taxa in fishing mortality are controlled; there is no evidence that high fecundity confers increased resilience. The evidence reviewed here is of direct relevance to the diverse criteria used at global and national levels by various bodies to assess threat status of fishes. Simple life history traits can be incorporated directly into quantitative assessment criteria, or used to modify the conclusions of quantitative assessments, or used as preliminary screening criteria for assessment of the ∼95% of marine fish species whose status has yet to be evaluated either by conservationists or fisheries scientists

    A comparison of no-take zones and traditional fishery management tools for managing site-attached species with a mixed larval pool

    No full text
    No-take zones (NTZs) can generate higher larval production by sessile, sedentary and site-attached species per unit area than in exploited areas, and may increase recruitment and yield compared to status quo management. Whilst NTZs may be considered an essential part of optimal management, few studies have specifically compared the effects of NTZs with those of correctly applied gear and effort controls.A yield-per-recruit (YPR) population model, based on the sedentary abalone Haliotis laevigata, was used to compare the effects of management by minimum landing size (MLS), effort limitation and NTZs, either singularly or in combination. Initially, a minimum basic YPR model was used. Three additional assumptions were sequentially added to the model to see if they affected conclusions drawn from the model. The additional assumptions were the inclusion of: (i) a length–fecundity relationship; (ii) an age-dependent natural mortality function; and (iii) mortality of undersized individuals due to fishery operations. In the absence of undersized mortality caused by fishing, under virtually all conditions the population is best managed with a combination of MLS and effort control, without any NTZs. For simulations that included mortality of undersized individuals in the fished area, under nearly all circumstances NTZs were considered an essential part of optimal fishery management, and management incorporating NTZs greatly increased the sustainable yield that could be taken
    corecore