10,444 research outputs found
RLLA: Surviving as a Small National Lifesaving Organisation - Progress in Lesotho: From 2004 to 2018
On the Conductance Sum Rule for the Hierarchical Edge States of the Fractional Quantum Hall Effect
The conductance sum rule for the hierarchical edge channel currents of a
Fractional Quantum Hall Effect state is derived analytically within the
Haldane-Halperin hierarchy scheme. We provide also an intuitive interpretation
for the hierarchical drift velocities of the edge excitations.Comment: 11 pages, no figure, Revtex 3.0, IC/93/329, ASITP-93-5
Magnetic coupling of a rotating black hole with its surrounding accretion disk
Effects of magnetic coupling (MC) of a rotating black hole (BH) with its
surrounding accretion disk are discussed in detail in the following aspects:
(i) The mapping relation between the angular coordinate on the BH horizon and
the radial coordinate on the disk is modified based on a more reasonable
configuration of magnetic field, and a condition for coexistence of the
Blandford-Znajek (BZ) and the MC process is derived. (ii) The transfer
direction of energy and angular momentum in MC process is described
equivalently by the co-rotation radius and by the flow of electromagnetic
angular momentum and redshifted energy, where the latter is based on an
assumption that the theory of BH magnetosphere is applicable to both the BZ and
MC processes. (iii) The profile of the current on the BH horizon and that of
the current density flowing from the magnetosphere onto the horizon are given
in terms of the angular coordinate of the horizon. It is shown that the current
on the BH horizon varies with the latitude of the horizon and is not continuous
at the angular boundary between the open and closed magnetic field lines. (iv)
The MC effects on disk radiation are discussed, and a very steep emissivity is
produced by MC process, which is consistent with the recent XMM-Newton
observation of the nearby bright Seyfert 1 galaxy MCG-6-30-15 by a variety of
parameters of the BH-disk system.Comment: 24 pages, 19 figures. Accepted by Ap
Screw instability of the magnetic field connecting a rotating black hole with its surrounding disk
Screw instability of the magnetic field connecting a rotating black hole (BH)
with its surrounding disk is discussed based on the model of the coexistence of
the Blandford-Znajek (BZ) process and the magnetic coupling (MC) process
(CEBZMC). A criterion for the screw instability with the state of CEBZMC is
derived based on the calculations of the poloidal and toroidal components of
the magnetic field on the disk. It is shown by the criterion that the screw
instability will occur, if the BH spin and the power-law index for the
variation of the magnetic field on the disk are greater than some critical
values. It turns out that the instability occurs outside some critical radii on
the disk. It is argued that the state of CEBZMC always accompanies the screw
instability. In addtition, we show that the screw instability contributes only
a small fraction of magnetic extraction of energy from a rotating BH.Comment: 18 pages, 13 figures; Accepted by Ap
An improved differential evolution algorithm and its applications to orbit design
Differential Evolution (DE) is a basic and robust evolutionary strategy that has been applied to determining the global optimum for complex optimization problems[1â5]. It was introduced in 1995 by Storn and Price [1] and has been successfully applied to optimization problems including nonlinear, non-differentiable, non-convex, and multi-model functions. DE algorithms show good convergence, high-reliability, simplicity, and a reduced number of controllable parameters [2]. Olds and Kluever [3] applied DE to an interplanetary trajectory optimization problem and demonstrated the effectiveness of DE to produce rapid solutions. Madavan [4] discussed various modifications to the DE algorithm, improved its computational efficiency, and applied it to aerodynamic shape optimization problems. DE algorithms are easy to use, as they require only a few robust control variables, which can be drawn from a well-defined numerical interval. However, the existing various DE algorithms also have limitations, being susceptible to instability and getting trapped into local optima[2]. Notable effort has been spent addressing this by coupling DE algorithms with other optimization algorithms (for example, Self Organizing Maps (SOM) [6], Dynamic Hill Climbing (DHC) [7], Neural Networks (NN) [7], Particle Swarm Optimization (PSO) [8]). In these cases, the additional algorithm is used as an additional loop within the optimization process, creating a hybrid system with an inner and outer loop. Such hybrid algorithms are inherently more complex and so the computation cost is increased. Attempting to address this, a self-adaptive DE was designed and applied to the orbit design problem for prioritized multiple targets by Chen[5]. However, the self-adaptive feature is somewhat limited as it relates only to the number of generations within the optimization. A Self-adaptive DE which can automatically adapt its learning strategies and the associated parameters during the evolving procedure was proposed by Qin and Suganthan[9] and 25 test functions were used to verify the algorithm
Influence of the Magnetic Coupling Process on the Advection Dominated Accretion Flows around Black Holes
A large-scale closed magnetic field can transfer angular momentum and energy
between a black hole (BH) and its surrounding accretion flow. We investigate
the effects of this magnetic coupling (MC) process on the dynamics of a hot
accretion flow (e.g., an advection dominated accretion flow, hereafter ADAF).
The energy and angular momentum fluxes transported by the magnetic field are
derived by an equivalent circuit approach. For a rapidly rotating BH, it is
found that the radial velocity and the electron temperature of the accretion
flow decrease, whereas the ion temperature and the surface density increase.
The significance of the MC effects depends on the value of the viscous
parameter \alpha. The effects are obvious for \alpha=0.3 but nearly ignorable
for \alpha=0.1. For a BH with specific angular momentum, a_*=0.9, and
\alpha=0.3, we find that for reasonable parameters the radiative efficiency of
a hot accretion flow can be increased by about 30%.Comment: 21 pages, 7 figures. Changed after the referee's suggestions.
Accepted for publication in the Astrophysical Journa
Current-oscillator correlation and Fano factor spectrum of quantum shuttle with finite bias voltage and temperature
A general master equation is derived to describe an electromechanical
single-dot transistor in the Coulomb blockade regime. In the equation, Fermi
distribution functions in the two leads are taken into account, which allows
one to study the system as a function of bias voltage and temperature of the
leads. Furthermore, we treat the coherent interaction mechanism between
electron tunneling events and the dynamics of excited vibrational modes.
Stationary solutions of the equation are numerically calculated. We show
current through the oscillating island at low temperature appears step like
characteristics as a function of the bias voltage and the steps depend on mean
phonon number of the oscillator. At higher temperatures the current steps would
disappear and this event is accompanied by the emergence of thermal noise of
the charge transfer. When the system is mainly in the ground state, zero
frequency Fano factor of current manifests sub-Poissonian noise and when the
system is partially driven into its excited states it exhibits super-Poissonian
noise. The difference in the current noise would almost be removed for the
situation in which the dissipation rate of the oscillator is much larger than
the bare tunneling rates of electrons.Comment: 14 pages, 8 figure
- âŠ