22,316 research outputs found
Imaging interstitial iron concentrations in boron-doped crystalline silicon using photoluminescence
Imaging the band-to-band photoluminescence of silicon wafers is known to provide rapid and high-resolution images of the carrier lifetime. Here, we show that such photoluminescence images, taken before and after dissociation of iron-boron pairs, allow an accurate image of the interstitial iron concentration across a boron-doped p-type silicon wafer to be generated. Such iron images can be obtained more rapidly than with existing point-by-point iron mapping techniques. However, because the technique is best used at moderate illumination intensities, it is important to adopt a generalized analysis that takes account of different injection levels across a wafer. The technique has been verified via measurement of a deliberately contaminated single-crystal silicon wafer with a range of known iron concentrations. It has also been applied to directionally solidified ingot-grown multicrystalline silicon wafers made for solar cell production, which contain a detectible amount of unwanted iron. The iron images on these wafers reveal internal gettering of iron to grain boundaries and dislocated regions during ingot growth.D.M. is supported by an Australian Research Council
QEII Fellowship. The Centre of Excellence for Advanced
Silicon Photovoltaics and Photonics at UNSW is funded by
the Australian Research Council
Imaging crystal orientations in multicrystalline silicon wafers via photoluminescence
We present a method for monitoring crystal orientations in chemically polished and unpassivated multicrystalline silicon wafers based on band-to-band photoluminescence imaging. The photoluminescence intensity from such wafers is dominated by surface recombination, which is crystal orientation dependent. We demonstrate that a strong correlation exists between the surface energy of different grain orientations, which are modelled based on first principles, and their corresponding photoluminescence intensity. This method may be useful in monitoring mixes of crystal orientations in multicrystalline or so-called “cast monocrystalline” wafers.H. C. Sio acknowledges scholarship support from
BT Imaging and the Australian Solar Institute, and the
Centre for Advanced Microscopy at ANU for SEM access.
This work has been supported by the Australian Research
Council
Magneto-electric coupling in zigzag graphene nanoribbons
Zigzag graphene nanoribbons can have magnetic ground states with
ferromagnetic, antiferromagnetic, or canted configurations, depending on
carrier density. We show that an electric field directed across the ribbon
alters the magnetic state, favoring antiferromagnetic configurations. This
property can be used to prepare ribbons with a prescribed spin-orientation on a
given edge.Comment: 4 pages, 5 figure
The Influence of Formulation, Buffering, pH and Divalent Cations on the Activity of Endothall on Hydrilla.
Endothall has been used as an aquatic herbicide for more
than 40 years and provides very effective weed control of
many weeds. Early research regarding the mechanism-of-action
of endothall contradicts the symptomology normally associated
with the product. Recent studies suggest endothall
is a respiratory toxin but the mechanism-of-action remains
unknown. To further elucidate the activity of endothall, several
endothall formulations were evaluated for their effects
on ion leakage, oxygen consumption and photosynthetic oxygen
evolution from hydrilla shoot tips. The influence of pH,
buffering and divalent cations was also evaluated. (PDF contains 6 pages.
Current noise of a quantum dot p-i-n junction in a photonic crystal
The shot-noise spectrum of a quantum dot p-i-n junction embedded inside a
three-dimensional photonic crystal is investigated. Radiative decay properties
of quantum dot excitons can be obtained from the observation of the current
noise. The characteristic of the photonic band gap is revealed in the current
noise with discontinuous behavior. Applications of such a device in
entanglement generation and emission of single photons are pointed out, and may
be achieved with current technologies.Comment: 4 pages, 3 figures, to appear in Phys. Rev. B (2005
Membrane paradigm and entropy of black holes in the Euclidean action approach
The membrane paradigm approach to black holes fixes in the vicinity of the
event horizon a fictitious surface, the stretched horizon, so that the
spacetime outside remains unchanged and the spacetime inside is vacuum. Using
this powerful method, several black hole properties have been found and
settled, such as the horizon's viscosity, electrical conductivity, resistivity,
as well as other properties. On the other hand the Euclidean action approach to
black hole spacetimes has been very fruitful in understanding black hole
entropy. Combining both the Euclidean action and membrane paradigm approaches a
direct derivation of the black hole entropy is given. In the derivation it is
considered that the only fields present are the gravitational and matter
fields, with no electric field.Comment: 13 page
Non-equilibrium Entanglement and Noise in Coupled Qubits
We study charge entanglement in two Coulomb-coupled double quantum dots in
thermal equilibrium and under stationary non-equilibrium transport conditions.
In the transport regime, the entanglement exhibits a clear switching threshold
and various limits due to suppression of tunneling by Quantum Zeno localisation
or by an interaction induced energy gap. We also calculate quantum noise
spectra and discuss the inter-dot current correlation as an indicator of the
entanglement in transport experiments.Comment: 4 pages, 4 figure
Realistic Earth escape strategies for solar sailing
With growing interest in solar sailing comes the requirement to provide a basis for future detailed planetary escape mission analysis by drawing together prior work, clarifying and explaining previously anomalies. Previously unexplained seasonal variations in sail escape times from Earth orbit are explained analytically and corroborated within a numerical trajectory model. Blended-sail control algorithms, explicitly independent of time, which providenear-optimal escape trajectories and maintain a safe minimum altitude and which are suitable as a potential autonomous onboard controller, are then presented. These algorithms are investigated from a range of initial conditions and are shown to maintain the optimality previously demonstrated by the use of a single-energy gain control law but without the risk of planetary collision. Finally, it is shown that the minimum sail characteristic acceleration required for escape from a polar orbit without traversing the Earth shadow cone increases exponentially as initial altitude is decreased
- …