1,243 research outputs found

    Volcanic Mound Fields on the East Pacific Rise, 16Ëš-19ËšS: Low Effusion Rate Eruptions at Overlapping Spreading Centers for the Past 1 Myr

    Get PDF
    Volcanic mound fields identified on SeaMARC II and HMR1 12 kHz side-scan data from the southern East Pacific Rise (SEPR) occur near overlapping spreading centers (OSCs) and migration traces of OSCs. The volcanic mound fields appear as a distinctive hummocky seafloor fabric due to side-scan backscatter reflections from clusters of moundshaped reflectors. The lack of growth of the mound fields away from the ridge axis, and their occurrence in association with OSC traces, suggests that mound fields form along the ridge crest near OSCs. Volcanic mound fields are found where 120 kHz side-scan and visual observations find fields of pillow mounds. Since pillow mounds are constructed by low effusion rate eruptions, the volcanic mound fields found near the OSCs and in their migration traces indicate that volcanic effusion rates tend to be lower near ridge discontinuities than midsegment regions. This tendency for low effusion rate eruptions at OSCs is documented for the past _1 Myr. Three independent measurements of ridge segmentation, (1) volcanic segment boundaries marked by the low effusion rate eruptions, (2) tectonic segments defined by OSCs, and (3) magmatic segment boundaries based on continuity of parental magma composition, all coincide in the study area. High backscatter off-axis lava fields not associated with seamounts are found on seafloor younger than _0.2 Ma. The _0.2 Ma corridor corroborates previous results from the distribution of small isolated volcanoes that indicates randomly distributed off-axis eruptions mainly occur on crust younger than _0.2 Ma

    Basaltic Lava Domes, Lava Lakes, and Volcanic Segmentation on the Southern East Pacific Rise

    Get PDF
    Meter-scale DSL-120 sonar mapping and coregistered Argo II photographic observations reveal changes in eruptive style that closely follow the third-order structural segmentation of the ridge axis on the southern East Pacific Rise, 17o11\u27-18o37\u27S. Near segment ends we observe abundant basaltic lava domes which average 20 rn in height and 200 rn in basal diameter and have pillow lava as the dominant lava morphology. The ubiquity of pillow lava suggests low effusion rate eruptions. The abundance of lava domes suggests that the fissure eruptions were of sufficient duration to focus and produce a line of volcanic edifices. Near segment centers we observe fewer but larger lava domes, voluminous drained and collapsed lava lakes, and smooth lobate and sheet lava flows with very little pillow lava. The abundance of sheet flows suggests that high effusion rate eruptions are common. Fewer lava domes and large lava lakes suggest that fissure eruptions do not focus to point sources. This pattern was observed on eight third-order ridge segments suggesting that a fundamental volcanic segmentation of the ridge occurs on this scale. The third-order segment boundaries also correlate with local maxima in the seismicaxial magmac hamber reflector depth throughout the study area and decreased across-axis width of the region of seismic layer 2A thickening along the one segment where sufficient cross-axis seismic lines exist. The geochemically defined magmatic segment boundaries in the study area match the locations of our volcanic segment boundaries, although rocks ampling density is not adequate to constrain the variation across all the third-order volcanic segments that we identify. These observations suggest that variation in the processes of crustal accretion along axis occurs at a length scale of tens of kilometers on superfast spreading (\u3e 140 km/Myr full rate) mid-ocean ridges

    Crustal Fissuring on the Crest of the Southern East Pacific Rise at 17Ëš15\u27-40\u27S

    Get PDF
    Fissure densities and widths have been mapped along the axial zone of the superfast spreading southern East Pacific Rise (EPR) at 17_150–400S with the near-bottom DSL-120 and Argo II imaging systems. We observe that the youngest lava flows (on a relative age scale) are sparsely fissured and that there is a cumulative increase in fissure abundance with time that produces a strong positive correlation between fissure density and relative age of lava flows. Average fissure widths were used to estimate fissure depths. In the 17_150–400S area, calculated fissure depths are estimated to extend below the seismic layer 2A/2B boundary, and fissures are widest/deepest where lava flows are youngest. We interpret these wide fissures in relatively young flows to be eruptive fissures. Relatively young lava flows combined with high average fissure widths south of 17_250S suggest that there may have been recent dike propagation along the ridge crest in this area. In comparison to the northern EPR at 9_–10_N the density of fissuring on the southern EPR is significantly higher, due in part to the higher occurrence of relatively older, more areally restricted pillow lava flows

    Distribution of Isolated Volcanoes on the Flanks of the East Pacific Rise, 15.3°-20°S

    Get PDF
    Volcanic constructions, not associated with seamount (or volcano) chains, are abundant on the flanks of the East Pacific Rise (EPR) but are rare along the axial high. The distribution of isolated volcanoes, based on multibeam bathymetric maps, is approximately symmetric about the EPR axis. This symmetry contrasts with the asymmetries in the distribution of volcano chains (more abundant on the west flank), the seafloor subsidence rates (slower on the west flank), and the distribution of plate-motion-parallel gravity lineaments (more prominento nthe west flank). Most of the isolated volcanoes complete their growth within -14 km of the axis on crust younger than 0.2 Ma, while seamount chain volcanoes continue to be active on older crust. Volcanic edifices within 6 km of the ridge axis are primarily found adjacent to axial discontinuities, suggesting a more sporadic magma supply and stronger lithosphere able to support volcanic constructions near axial discontinuities. The volume of isolated near-axis volcanoes correlates with ridge axis cross-sectional area, suggesting a link between the magma budget of the ridge and the eruption of near-axis volcanoes. Within the study area, off-axis volcanic edifices cover at least 6% of the seafloor and contribute more than 0.2% to the volume of the crust. The inferred width of the zone where isolated volcanoes initially form increases with spreading rate for the Mid-Atlantic Ridge (\u3c4 km), northern EPR (\u3c20 km), and southern EPR(\u3c28 km), so that isolated volcanoes form primarily on lithosphere younger than 0.2 Ma (\u3c 4-6 km brittle thickness), independent of spreading rate. This suggests some form of lithospheric control on the eruption of isolated off-axis volcanoes due to brittle thickness, increased normal stresses across cracks impeding dike injection, or thermal stresses within the newly forming lithosphere

    Correlation Between Volcanic and Tectonic Segmentation of Fast-Spreading Ridges: Evidence from Volcanic Structures and Lava Flow Morphology on the East Pacific Rise at 9Ëš-10ËšN

    Get PDF
    Combined analyses of volcanic features in DSL-120 sonar data and Argo I images along the ridge crest of the East Pacific Rise, 9_090–540N reveal a consistent decrease in inferred lava effusion rate toward the ends of third-order segments. The correlation of tectonic segmentation and volcanic style suggests that third-order segmentation corresponds to the volcanic segmentation of the ridge. Along-axis changes in volcanic structures (from collapse troughs to basaltic lava domes) and lava morphology (from sheet to pillow flows) coincide with the boundaries of morphologically defined third order tectonic segments of the ridge crest visible in shipboard multibeam bathymetry. Pillow lava flows cover 25% of the surveyed area of the ridge crest and are closely associated with small lava domes that occur primarily at third-order segment ends. An additional 25% of the surveyed area of the ridge crest is covered by sheet lava flows found in close association with an axial collapse trough. The remaining terrain consists of lobate lava flows. We interpret the spatial correlations of morphologic, structural, seismic, and petrologic data as evidence that individual volcanic plumbing systems are organized at _20 km spacing along the ridge axis (third-order segment scale) in agreement with the hypothesis that volcanic and tectonic segmentations are correlated. For fast spreading ridges, we estimate that the longevity of volcanic segments is _104–105 years, 1–3 orders of magnitude longer than fourth-order segments (_102–103 years). This implies the present pattern of hydrothermal activity may reorganize tens or hundreds of times while volcanic segmentation remains fairly stable

    ONR seafloor natural laboratories on slow- and fast-spreading mid-ocean ridges

    Get PDF
    Author Posting. © American Geophysical Union, 1991. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Eos 72, no. 25 (1991): 268-270, doi:10.1029/90EO00214.Long-term Natural Laboratories for in-depth studies of the seafloor at both a slowspreading (60 mm/yr) mid-ocean ridge are being established by the Office of Naval Research. The two Natural Laboratories were selected for their representativeness of global mid-ocean ridge environments, and for their logistic accessibility. The Natural Laboratory region for the slow-spreading regime is on the Mid-Atlantic Ridge from Kane Fracture Zone north to about 27°30″N (Figure 1), and the fast-spreading counterpart is on the East Pacific Rise at about 8°–10°30″N, from Siqueiros to Clipperton Fracture Zone (Figure 2). Together, the two Natural Laboratories include most significant geologic variables that are thought to control both the shape and structure of the igneous crust and the scatter of acoustic wavefields from the bottom/subbottom (BSB) at low angles of incidence.This work has been supported by the Office of Naval Research, Codes 11250A and 1125GG, and by National Science Foundation grant OCE 8716713

    High-Resolution Surveys Along the Hot Spot–Affected Galapagos Spreading Center: 1. Distribution of Hydrothermal Activity

    Get PDF
    The spatial density of hydrothermal activity along most mid-ocean ridges is a robust linear function of spreading rate (or magmatic budget), but extreme crustal properties may alter this relationship. In 2005–2006 we tested the effect of thickened crust on hydrothermal activity using high-resolution mapping of plumes overlying the hot spot–affected Galapagos Spreading Center from 95o to 89o42\u27W (~560 km of ridge crest). Plume mapping discovered only two active, high-temperature vent fields, subsequently confirmed by camera tows, though strong plume evidence indicated minor venting from at least six other locations. Total plume incidence (ph), the fraction of ridge crest overlain by significant plumes, was 0.11 ± 0.014, about half that expected for a non–hot spot mid-ocean ridge with a similar magmatic budget. Plume distributions on the Galapagos Spreading Center were uncorrelated with abrupt variations in the depth of the along-axis melt lens, so these variations are apparently not controlled by hydrothermal cooling differences. We also found no statistical difference (for a significance level of 0.05) in plume incidence between where the seismically imaged melt lens is shallow (2 ± 0.56 km, ph = 0.108 ± 0.045) and where it is deep (3.4 ± 0.7 km, ph = 0.121 ± 0.015). The Galapagos Spreading Center thus joins mid-ocean ridges near the Iceland (Reykjanes Ridge), St. Paul-Amsterdam (South East Indian Ridge), and Ascension (Mid- Atlantic Ridge) hot spots as locations of anomalously scarce high-temperature venting. This scarcity implies that convective cooling along hot spot–affected ridge sections occurs primarily by undetected diffuse flow or is permanently or episodically reduced compared to normal mid-ocean ridges

    Local Thermometry of Neutral Modes on the Quantum Hall Edge

    Full text link
    A system of electrons in two dimensions and strong magnetic fields can be tuned to create a gapped 2D system with one dimensional channels along the edge. Interactions among these edge modes can lead to independent transport of charge and heat, even in opposite directions. Measuring the chirality and transport properties of these charge and heat modes can reveal otherwise hidden structure in the edge. Here, we heat the outer edge of such a quantum Hall system using a quantum point contact. By placing quantum dots upstream and downstream along the edge of the heater, we can measure both the chemical potential and temperature of that edge to study charge and heat transport, respectively. We find that charge is transported exclusively downstream, but heat can be transported upstream when the edge has additional structure related to fractional quantum Hall physics.Comment: 24 pages, 18 figure

    Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2

    Full text link
    Recent theories suggest that the excitations of certain quantum Hall states may have exotic braiding statistics which could be used to build topological quantum gates. This has prompted an experimental push to study such states using confined geometries where the statistics can be tested. We study the transport properties of quantum point contacts (QPCs) fabricated on a GaAs/AlGaAs two dimensional electron gas that exhibits well-developed fractional quantum Hall effect, including at bulk filling fraction 5/2. We find that a plateau at effective QPC filling factor 5/2 is identifiable in point contacts with lithographic widths of 1.2 microns and 0.8 microns, but not 0.5 microns. We study the temperature and dc-current-bias dependence of the 5/2 plateau in the QPC, as well as neighboring fractional and integer plateaus in the QPC while keeping the bulk at filling factor 3. Transport near QPC filling factor 5/2 is consistent with a picture of chiral Luttinger liquid edge-states with inter-edge tunneling, suggesting that an incompressible state at 5/2 forms in this confined geometry
    • …
    corecore