80 research outputs found

    Excellent passivation of germanium surfaces by POx/Al2O3 stacks

    Get PDF
    Passivation of germanium surfaces is vital for the application of germanium in next-generation electronic and photonic devices. In this work, it is demonstrated that stacks of phosphorous oxide and aluminum oxide (POx/Al2O3) provide excellent and stable passivation of germanium surfaces, with state-of-the-art surface recombination velocities down to 8.9 cm/s. The POx/Al2O3 stack also exhibits positive fixed charge on germanium, which makes it especially suited for passivation of highly doped n-type germanium surfaces. The chemical passivation mechanism is found to be related to the passivation of defects by hydrogen, which is mobilized by the formation of AlPO4 upon annealing. Furthermore, the GeOx interlayer is removed due to a kind of “self-cleaning” process during the deposition of POx/Al2O3 stacks on germanium, which may in part explain the excellent passivation quality. This self-cleaning of the interface may also allow simplified device fabrication workflows, as pretreatments may be omitted

    Silicon surface passivation by transparent conductive zinc oxide

    Get PDF
    Surface passivation is essential for high-efficiency crystalline silicon (c-Si) solar cells. Despite the common use of transparent conductive oxides (TCOs) in the field of solar cells, obtaining surface passivation by TCOs has thus far proven to be particularly challenging. In this work, we demonstrate outstanding passivation of c-Si surfaces by highly transparent conductive ZnO films prepared by atomic layer deposition. Effective surface recombination velocities as low as 4.8 cm/s and 11 cm/s are obtained on 3 Ω cm n- and p-type (100) c-Si, respectively. The high levels of surface passivation are achieved by a novel approach by using (i) an ultrathin SiO2 interface layer between ZnO and c-Si, (ii) a sacrificial Al2O3 capping layer on top of the ZnO film during forming gas annealing, and (iii) the extrinsic doping of the ZnO film by Al, B, or H. A combination of isotope labeling, secondary-ion mass spectrometry, and thermal effusion measurements showed that the sacrificial Al2O3 capping layer prevents the effusion of hydrogen from the crystalline ZnO and the underlying Si/SiO2 interface during annealing, which is critical in achieving surface passivation. After annealing, the Al2O3 capping layer can be removed from the ZnO film without impairing the high levels of surface passivation. The surface passivation levels increase with increased doping levels in ZnO, which can be attributed to field-effect passivation by a reduction in the surface hole concentration. The ZnO films of this work are suitable as a transparent conductor, an anti-reflection coating, and a surface passivation layer, which makes them particularly promising for simplifications in future solar cell manufacturing

    Atomic layer deposition of NiO applied in a monolithic perovskite/PERC tandem cell

    Get PDF
    Monolithic perovskite/silicon tandem photovoltaics have fueled major research efforts as well as gaining rapid industrial interest. So far, most of the literature has focused on the use of currently more expensive silicon heterojunction bottom cell technology. This work demonstrates a perovskite/silicon tandem solar cell based on the industrially dominant passivated emitter and rear cell (PERC) technology. In detail, we investigate a tunnel recombination junction (TRJ) consisting of ITO/NiO/2-(9H-carbazol-9-yl)ethyl] phosphonic acid (2PACz) and compare it with an ITO/2PACz TRJ. Specifically, the NiO layer is deposited by atomic layer deposition (ALD). Although ITO/2PACz-based tandem devices can reach more than 24% conversion efficiency, we observe that they suffer from a large spread in photovoltaic parameters due to electrical shunts in the perovskite top cell, caused by the inhomogeneity of the 2PACz layer on ITO. Instead, when ALD NiO is sandwiched between 2PACz and ITO, the surface coverage of 2PACz improves and the yield of the devices, in terms of all device parameters, also improves, i.e., the standard deviation decreases from 4.6% with ITO/2PACz to 2.0% with ITO/NiO/2PACz. In conclusion, thanks to the presence of NiO, the TRJ consisting of ITO/NiO/2PACz leads to a 23.7% efficient tandem device with narrow device efficiency distribution

    Low Surface Recombination in Hexagonal SiGe Alloy Nanowires:Implications for SiGe-Based Nanolasers

    Get PDF
    Monolithic integration of silicon-based electronics and photonics could open the door toward many opportunities including on-chip optical data communication and large-scale application of light-based sensing devices in healthcare and automotive; by some, it is considered the Holy Grail of silicon photonics. The monolithic integration is, however, severely hampered by the inability of Si to efficiently emit light. Recently, important progress has been made by the demonstration of efficient light emission from direct-bandgap hexagonal SiGe (hex-SiGe) alloy nanowires. For this promising material, realized by employing a nanowire structure, many challenges and open questions remain before a large-scale application can be realized. Considering that for other direct-bandgap materials like GaAs, surface recombination can be a true bottleneck, one of the open questions is the importance of surface recombination for the photoluminescence efficiency of this new material. In this work, temperature-dependent photoluminescence measurements were performed on both hex-Ge and hex-SiGe nanowires with and without surface passivation schemes that have been well documented and proven effective on cubic silicon and germanium to elucidate whether and to what extent the internal quantum efficiency (IQE) of the wires can be improved. Additionally, time-resolved photoluminescence (TRPL) measurements were performed on unpassivated hex-SiGe nanowires as a function of their diameter. The dependence of the surface recombination on the SiGe composition could, however, not be yet addressed given the sample-to-sample variations of the state-of-the-art hex-SiGe nanowires. With the aforementioned experiments, we demonstrate that at room temperature, under high excitation conditions (a few kW cm–2), the hex-(Si)Ge surface is most likely not a bottleneck for efficient radiative emission under relatively high excitation conditions. This is an important asset for future hex(Si)Ge optoelectronic devices, specifically for nanolasers

    Area-selective atomic layer deposition of ZnO by area activation using electron beam-induced deposition

    Get PDF
    Area-selective atomic layer deposition (ALD) of ZnO was achieved on SiO2 seed layer patterns on H-terminated silicon substrates, using diethylzinc (DEZ) as the zinc precursor and H2O as the coreactant. The selectivity of the ALD process was studied using in situ spectroscopic ellipsometry and scanning electron microscopy, revealing improved selectivity for increasing deposition temperatures from 100 to 300 °C. The selectivity was also investigated using transmission electron microscopy and energy-dispersive X-ray spectroscopy. Density functional theory (DFT) calculations were performed to corroborate the experimental results obtained and to provide an atomic-level understanding of the underlying surface chemistry. A kinetically hindered proton transfer reaction from the H-terminated Si was conceived to underpin the selectivity exhibited by the ALD process. By combining the experimental and DFT results, we suggest that the trend in selectivity with temperature may be due to a strong DEZ or H2O physisorption on the H-terminated Si that hampers high selectivity at low deposition temperature. This work highlights the deposition temperature as an extra process parameter to improve the selectivity

    Towards the implementation of atomic layer deposited In2O3 : H in silicon heterojunction solar cells

    Get PDF
    Hydrogen doped indium oxide (In2O3:H) with excellent optoelectronic properties, deposited using atomic layer deposition (ALD), has been made applicable as a window electrode material for silicon heterojunction (SHJ) solar cells. It is particularly challenging to integrate ALD In2O3:H into SHJ solar cells due to a low reactivity of the metalorganic precursor cyclopentadienyl indium (InCp) with the H-terminated surface of a-Si:H. This challenge has been overcome by a simple and effective plasma-based surface pretreatment developed in this work. A remote inductively coupled O2 or Ar plasma has been used to modify the surface of a-Si:H, thereby promoting the adsorption of InCp on the surface. The impact of the short plasma exposure on c-Si/a-Si:H interface passivation has also been studied. It has been found that the observed degradation of the interface is not due to ion bombardment, but rather due to ultraviolet emission from the plasma. Fortunately, these light-induced defects have been found to be metastable, and the interface passivation can thus easily be fully recovered by a short post-annealing. Using such a mild Ar plasma pretreatment, ALD In2O3:H has been successfully implemented in a SHJ solar cell. A short-circuit current density of 40.1 mA/cm2, determined from external quantum efficiency, is demonstrated for a textured SHJ solar cell with an In2O3:H window electrode, compared to 38.5 mA/cm2 for a reference cell that has the conventional Sn-doped indium oxide (In2O3:Sn, ITO) window electrode. The enhanced photocurrent stems from a reduced parasitic absorption of In2O3:H in the entire wavelength range of 400–1200 nm

    Spatial ALD in beeld

    No full text
    In Nederland is er veel activiteit op het gebied van ALD, zowel op academisch als industrieel vlak. Dit hebben we mooi uiteengezet in het juni nummer 2020 van het NEVAC blad, onder de slogan How a small country can be big in nanolayers. Op 9 juni dit jaar was de spatial ALD dag in grandcafé de Zwarte Doos op de campus van de Technische Universiteit Eindhoven. Specifiek de variant spatial ALD was het onderwerp van deze workshop. Zie het kader als je meer wilt weten over wat ALD en spatial ALD zijn. In dit artikel blik ik graag met jullie terug op deze dag.In Nederland is er veel activiteit op het gebied van ALD, zowel opacademisch als industrieel vlak. Dit hebben we mooi uiteengezet inhet juni nummer 2020 van het NEVAC blad, onder de slogan Howa small country can be big in nanolayers. Op 9 juni dit jaar was despatial ALD dag in grandcafé de Zwarte Doos op de campus van deTechnische Universiteit Eindhoven. Specifiek de variant spatial ALDwas het onderwerp van deze workshop. Zie het kader als je meer wiltweten over wat ALD en spatial ALD zijn. In dit artikel blik ik graagmet jullie terug op deze dag

    Spatial ALD in beeld

    No full text
    • …
    corecore