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ABSTRACT

Passivation of germanium surfaces is vital for the application of germanium in next-generation electronic and photonic devices. In this work,
it is demonstrated that stacks of phosphorous oxide and aluminum oxide (POx/Al2O3) provide excellent and stable passivation of germanium
surfaces, with state-of-the-art surface recombination velocities down to 8.9 cm/s. The POx/Al2O3 stack also exhibits positive fixed charge on
germanium, which makes it especially suited for passivation of highly doped n-type germanium surfaces. The chemical passivation mecha-
nism is found to be related to the passivation of defects by hydrogen, which is mobilized by the formation of AlPO4 upon annealing.
Furthermore, the GeOx interlayer is removed due to a kind of “self-cleaning” process during the deposition of POx/Al2O3 stacks on germa-
nium, which may in part explain the excellent passivation quality. This self-cleaning of the interface may also allow simplified device fabrica-
tion workflows, as pretreatments may be omitted.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0164028

Germanium is an attractive semiconductor for various emerging
applications, due to its good optical properties and high charge carrier
mobilities, and currently receives significant interest for logic applica-
tions,1,2 quantum technologies,3 photovoltaics,4,5 and (infrared) pho-
tonics.6,7 Although germanium is an indirect bandgap semiconductor
(�0.66 eV),8 strained germanium9 and hexagonal germanium10 were
recently shown to exhibit direct bandgaps, which can enable efficient
light emission. Moreover, germanium is highly compatible with sili-
con, which has led to germanium-on-silicon photonics,11,12 and the
use of silicon-germanium (SiGe) alloys in heterojunction bipolar tran-
sistors13 and qubits.14

For many of these applications, defects at the germanium sur-
face can significantly limit the device performance,15,16 for example,
through defect-assisted charge carrier recombination. The continued
down-scaling of semiconductor and photonic devices, furthermore,
leads to increased surface-to-volume ratios, which, in turn, leads to a
more prominent role of these surface defects. To combat the detri-
mental effects of these defects, surface passivation can be employed,
which is typically achieved by a reduction in the interface defect den-
sity (Dit), commonly known as chemical passivation. Additionally,
surface recombination can be partially mitigated by a reduction in
minority charge carriers at the interface, which is known as field-
effect passivation. This can, for example, be achieved by a fixed

charge density (Qf) present at the interface or in the passivation
layer.

Surface passivation of germanium has been a significant chal-
lenge,17 which can be ascribed to the difficulty in forming a stable and
high-quality interfacial layer on germanium. Recently, several passiv-
ation schemes on germanium have been investigated, many of which
were inspired by silicon surface passivation, including Al2O3,

18,19

a-Si:H/Al2O3,
20 a-SiCx/Al2O3,

21 SiNx,
22,23 SiNx/Al2O3,

22 and SiOx/
Al2O3.

24 This has resulted in varying levels of surface passivation with
effective surface recombination velocities (Seff) ranging between 1 and
200 cm/s. (Note these values are reported at various injection levels.)
However, even with these recent additions, surface passivation of ger-
manium remains challenging and effective passivation schemes for
germanium remain scarce. Passivation schemes with positive Qf on
germanium are especially limited, which are particularly valuable for
passivation of highly doped n-type germanium surfaces. It is noted
that SiOx and SiOx/Al2O3 were identified to exhibit some positive Qf

on germanium,24 while SiNx—which has positive fixed charge on
silicon—has negative fixed charge on germanium.22,23

Recently, stacks of phosphorus oxide and aluminum oxide (POx/
Al2O3) have shown to lead to excellent surface passivation of silicon,
which is enabled by a unique combination of very low Dit and high
positive Qf.

25–27 These POx/Al2O3 stacks were determined to have a
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dielectric constant of 6.4 and a bandgap of >6 eV.26 POx/Al2O3 has,
furthermore, been shown to lead to effective surface passivation of
indium phosphide,28 where it also appeared to contain positive fixed
charge.29 In this Letter, we report excellent passivation of germanium
surfaces by such POx/Al2O3 stacks. Furthermore, we investigate the
mechanisms behind this passivation and compare it to surface passiv-
ation of germanium by Al2O3 and to surface passivation of silicon by
POx/Al2O3 and Al2O3.

The POx/Al2O3 stacks were deposited symmetrically on 150lm
thick double-side polished 1–3 X cm p-type germanium (100) wafers
and 280lm double-side polished 1–5 X cm n-type silicon (100)
wafers, using a deposition process based on chemical vapor deposition
(CVD) and atomic layer deposition (ALD), which is described in detail
in the supplementary material. The wafers received a 90 s 1% HF dip
and were treated using a 1min O2 plasma prior to deposition of POx/
Al2O3. The POx layer has a thickness of 5 nm and the Al2O3 layer has
a thickness of 10 nm. Annealing was performed for 10min in an N2

ambient at various temperatures, similar to previous studies.25,26 The
surface passivation quality of POx/Al2O3 on germanium was assessed
in the same fashion as on silicon, using quasi-steady-state photocon-
ductance decay measurements.30 These measurements were made
suitable for germanium following the method described by Berghuis
et al.,19,31 which is also elaborately discussed by Mart�ın et al.32 The
measurements were used to determine the minority carrier lifetimes
(Dn¼ 1015 cm�3), from which the surface recombination velocity was
calculated.

The surface recombination velocity (Seff) for POx/Al2O3 and
Al2O3 on germanium and silicon as a function of annealing tempera-
ture is shown in Fig. 1. The POx/Al2O3 stacks on germanium lead to
excellent surface passivation, with a Seff down to 9.5 cm/s after anneal-
ing at 250 �C. This is significantly better compared to Al2O3 on germa-
nium, which leads to relatively high Seff values (�103 cm/s). On
silicon, both POx/Al2O3 and Al2O3 provide excellent surface passiv-
ation quality, indicated by the very low Seff values (<10 cm/s). In Fig.
1, it can furthermore be seen that the optimal annealing temperatures
for POx/Al2O3 on germanium and silicon are 250 and 350 �C,

respectively. This difference in the optimal annealing temperature is
notable, as for Al2O3 on germanium and silicon the optimal annealing
temperature is quite similar (425 and 400 �C, respectively). For POx/
Al2O3 on silicon, it was found that the chemical passivation mecha-
nism is related to the passivation of silicon dangling bonds by hydro-
gen, which is mobilized by the formation of AlPO4 upon annealing at
350 �C.25,26 The chemical passivation mechanisms for POx/Al2O3 on
germanium will be discussed below.

From Fig. 1, it is clear that there are differences between the pas-
sivation of germanium by POx/Al2O3 and Al2O3 and also between
passivation of germanium and silicon by POx/Al2O3. To understand
these differences and to understand the passivation of germanium by
POx/Al2O3 stacks in general, several aspects of the POx/Al2O3 stacks
on germanium have been investigated. This includes the presence of
positive fixed charge, the chemical passivation mechanism, and the
reduction and removal of the GeOx by a kind of “self-cleaning” pro-
cess during deposition of the POx/Al2O3 stacks. Furthermore, the sta-
bility of the surface passivation quality has been investigated, which is
discussed first.

The stability of the surface passivation quality is presented in
Fig. 2, where Seff is shown as function of time for samples stored in
ambient conditions in the dark. For POx/Al2O3 on germanium, the Seff
increased slightly from 8.9 to 14 cm/s in the first day, after which it
stays constant at around 14 cm/s for more than 200 days, which sug-
gests highly stable surface passivation. For Al2O3 on germanium, the
Seff decreased over time, and a significant drop in Seff after around
30days was observed.19 After this drop, the Seff stayed constant at
around 300 cm/s. For POx/Al2O3 on silicon, an increase in Seff could
also be observed, but this increase is much slower than on germanium
and starts only after 1 day. For Al2O3 on silicon, the passivation quality
is very stable, and after around 1300 days even a very slight decrease in
Seff was observed. This is in line with earlier reports for stability of
Al2O3 on silicon, where the passivation quality either stayed the same
or improved slightly over time.33

For Al2O3 on germanium, the decrease in Seff over time has been
attributed to the generation of additional negative fixed charge.20 For

FIG. 1. Surface recombination velocity (Seff) of germanium and silicon surfaces
passivated by POx/Al2O3 as a function of annealing temperature. For reference, Seff
values for Al2O3 on germanium

19 and silicon26 have also been added.

FIG. 2. Seff of germanium and silicon surfaces passivated by POx/Al2O3 as a func-
tion of time. For reference, Seff values for Al2O3 on germanium19 and silicon have
also been added.
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Al2O3 on silicon, it was found that UV irradiation could lead to an
increase in lifetime33 (decrease in Seff), which was also attributed to an
increase in negative fixed charge density. The slight increase in the Seff
for silicon and germanium passivated by POx/Al2O3 might, therefore,
also originate from a change in fixed charge density, which can, in par-
ticular, result from a slight decrease in positive Qf.

To investigate whether the POx/Al2O3 stacks also provide posi-
tive fixed charge (Qf) on germanium, the corona-lifetime method25,34

has been employed. An increase in Seff when depositing negative
corona charges on the POx/Al2O3 was observed, as shown in Fig. 3.
This indicates that the positive fixed charge in the dielectric is being
compensated, which lowers the field-effect passivation. The deposition
of net positive corona charge did not lead to an increase in Seff of POx/
Al2O3 on germanium as shown in the supplementary material, provid-
ing further evidence for the presence of positive fixed charge.

As opposed to corona-lifetime measurements for POx/Al2O3 on
silicon, a peak in Seff is not observed for POx/Al2O3 on germanium.
Therefore, determination of the magnitude of Qf is not possible. It is
noted that the corona-lifetime method is not always non-intrusive, and
the deposited corona charge density leads to relatively high electric fields
across the measured dielectric, which could in some cases lead to charge
injection.23 It is possible that during the compensation of the positive
fixed charge by the negative corona charges, more positive fixed charge
is generated, and therefore, Seff does not decrease again. This generation
of more positive fixed charge for POx/Al2O3 on germanium may be
facilitated by the absence of a GeOx interlayer (as will be shown later),
which means that the POx layer is in direct contact with the germanium
semiconductor without a dielectric (tunneling) barrier.

Strikingly, it appears that the positive fixed charge of the POx/
Al2O3 stacks is not influenced significantly by the underlying semicon-
ductor, as the stack provides positive fixed charge on silicon, indium
phosphide, and germanium. The presence of positive fixed charge on
germanium is quite special, as even SiNx—which has positive fixed
charge on silicon—has a negative fixed charge on germanium.22,23

Infrared spectra of POx/Al2O3 stacks on silicon and germanium
were determined for different annealing temperatures, as shown in
Fig. 4. For POx/Al2O3 on silicon, the infrared spectra have been deter-
mined before25,26 and correspond well to the current data. The peak
assignments follow those determined previously.25,26 The formation of
the peak at 1100 cm�1 due to annealing is indicative of the formation
of AlPO4,

25,26 as this peak is characteristic for [PO4]
3� tetrahedra and

is also a prominent absorption peak for AlPO4 films. The formation of
this peak is also observed on germanium, indicative of the formation
of AlPO4. Interestingly, the formation of this peak occurs at lower
annealing temperature on germanium than on silicon, which is consis-
tent with the shift in optimal annealing temperature, as observed in Fig.
1. On germanium, this peak is fully formed upon annealing at 250 �C,
while on silicon the peak formation is completed at 350 �C. For anneal-
ing at higher temperatures up to 500 �C, there is no further increase in
the intensity of this peak, as shown by the black line in Fig. 4.

On silicon, it was found that the chemical passivation mechanism
of POx/Al2O3 is related to passivation of silicon dangling bonds by
hydrogen, where the hydrogen is released by the formation of AlPO4,
which occurs at temperatures around 350–400 �C.26 On germanium,
the optimal annealing temperature and the temperature at which
AlPO4 is formed also coincide, but at a lower temperature of 250 �C.
This suggests that POx/Al2O3 has a similar chemical passivation mech-
anism on germanium as on silicon, i.e., the formation of AlPO4 leads
to the release of hydrogen, which, in turn, leads to the passivation of
dangling bonds and other defects at the semiconductor surface. The
temperature at which this occurs appears to be affected by the underly-
ing substrate. Based on previous observations on silicon,26 it is
expected that the field-effect passivation on germanium is not affected
significantly by annealing. It is noted that hydrogen behaves differently
in germanium and silicon,15,35 and while it is expected that hydrogen
can passivate defects on germanium, this is typically seen as being less
effective on germanium as compared to silicon.19,22,36

The loss of hydrogen on both silicon and germanium at higher
annealing temperatures can be identified by the lower absorbance in
the 3000–3500 cm�1 region with increasing annealing temperatures,
which are typically related to O–H vibrations.37 This loss of hydrogen

FIG. 3. Seff as a function of corona charge density for POx/Al2O3 on Ge and Si.27

For reference, corona charging curves of Al2O3 on Ge23 and Si23 are also added.
The magnitude of Qf can be determined from the corona charge density at the
peak position of Seff and has the opposite polarity. The magnitude of the positive Qf

could not be determined for POx/Al2O3 on germanium.
FIG. 4. Infrared spectra of as-deposited and annealed POx/Al2O3 stacks on Si and
Ge.
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can explain the depassivation—for example, by breaking of Si–H or
Ge–H bonds—at higher annealing temperatures, as shown by the
increase in Seff in Fig. 1. The earlier onset of depassivation for POx/
Al2O3 on germanium as compared to silicon may be in part related to
the lower Ge–H (3.6 eV) bond energy with respect to the Si–H
(3.9 eV) bond energy.38

X-ray photoelectron spectroscopy (XPS) depth profiles for as-
deposited (solid line) and annealed (dashed line) POx/Al2O3 stacks on
germanium are shown in Fig. 5(a). Note these XPS depth profiles are
obtained using argon ion sputtering. As also observed previously on
silicon,25 aluminum is present in the POx layer already in the as depos-
ited state. Upon annealing, there appear to be barely any changes to
the XPS depth profiles, except for a slight change in the Al signal
within the POx layer. This change in slope may be related to the for-
mation of AlPO4 (see Fig. 4) and was also observed for POx/Al2O3 on
silicon. Note that the Al signal near the germanium surface is likely
related to a sputter artifact.

In the XPS depth profiles, the presence of a GeOx interlayer was
not found for POx/Al2O3 on germanium. This is surprising, as the ger-
manium surfaces were exposed to a 1min O2 plasma prior to deposi-
tion of the POx/Al2O3 stacks and a SiOx interlayer is present for POx/
Al2O3 on silicon. Therefore, it has been investigated how the deposi-
tion of the POx/Al2O3 stack affects the GeOx interlayer. This is shown
by the Ge3d spectra in Figs. 5(b)–5(d). The Ge3d spectra on the ger-
manium wafer prior to deposition of the POx/Al2O3 stack are shown
by the black solid lines for as-received GeOx on n-type [Fig. 5(b)] and
p-type [Fig. 5(c)] germanium and O2-plasma grown (after HF dip)
GeOx on p-type germanium [Fig. 5(d)]. The last case is representative
of the conditions used in the rest of this study. The Ge0þ (3d5/2) and
Ge4þ oxidation states are located at binding energies of 29.3 and
32.7 eV, respectively. In all cases, a GeOx layer is clearly present as
shown by the peak around 32.7 eV. The difference in relative peak
height is likely related to different thicknesses of this initial GeOx layer.
The red solid line shows the Ge3d spectra after deposition of the POx/
Al2O3 stacks, which are taken from depth profiles after 550 s of sput-
tering, i.e., at the POx/Ge interface, where the GeOx layer should be
present. After deposition of the POx/Al2O3 stacks, only a small GeOx

shoulder remains in Fig. 5(b), and no more GeOx contributions can be
observed in Figs. 5(c) and 5(d). These results indicate that the deposi-
tion of the POx/Al2O3 stacks lead to the reduction and removal of the
GeOx interlayer.

The reduction and removal of the GeOx interlayer should be
related to the POx layer, as the deposition of just Al2O3 on germanium
results in a GeOx interlayer.

19 The shoulder of GeOx that remains after
deposition of the POx/Al2O3 stack shown in Fig. 5(b) suggests that the
POx is reducing the thickness of the GeOx interlayer and was appar-
ently not able to fully reduce/remove the GeOx in this case. This might
be because this GeOx interlayer is thicker than those shown in Figs.
5(c) and 5(d).

This reduction and removal of the GeOx interlayer resembles the
interfacial “self-cleaning” of gallium arsenide by atomic layer deposi-
tion of Al2O3,

39 which is attributed to the interaction between the
interfacial oxide and the precursor. However, the mechanism behind
this “self-cleaning” process appears to be somewhat different in nature,
as it was observed that a stack of 2 nm POx and 2nm Al2O3 does not
affect the GeOx interlayer (not shown). This suggests that an interac-
tion between the GeOx and the POx precursor (trimethyl phosphate)
at the start of the deposition is not simply responsible for the removal
of the GeOx. The current results suggest instead that the POx layer
itself reduces the GeOx interlayer thickness, with thin GeOx layers
even being fully removed. The exact mechanism behind this phenom-
enon requires additional investigation.

For surface passivation, interlayers can be highly important, and
the SiOx interlayer is often key for surface passivation of silicon. It is
quite straightforward to obtain a high-quality SiOx interlayer on sili-
con, while it is more challenging to form a high-quality GeOx inter-
layer on germanium.19,40 As shown in Fig. 1, POx/Al2O3 on
germanium provides significantly better surface passivation than
Al2O3 on germanium, which may be explained by this difference in
GeOx interlayer. The absence of the GeOx interlayer for POx/Al2O3 on
germanium suggests a Ge/POx interface, which may yield substantially
lower interface defect density (Dit) as compared to the Ge/GeOx inter-
face for Al2O3 on germanium. This, in turn, can explain the lower Seff
for POx/Al2O3 on germanium, although the lack of a GeOx layer may

FIG. 5. (a) XPS depth profile for as-deposited and annealed POx/Al2O3 stacks on Ge (sputter time offset was used to align the germanium substrate). Normalized Ge3d spec-
tra before and after POx/Al2O3 deposition on (b) as-received GeOx on n-type germanium, (c) as-received GeOx on p-type germanium, and (d) O2-plasma grown GeOx on p-
type germanium. Ge3d peaks are charge referenced to elemental germanium.
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also have some effect on the field-effect passivation. Furthermore, the
removal of the GeOx interlayer by the deposition process may also
enable simplified device fabrication workflows, as pretreatments may
be omitted.

In summary, the POx/Al2O3 stacks provide excellent and highly
stable surface passivation quality on germanium, with Seff values down
to 8.9 cm/s. The POx/Al2O3 stack exhibits positive fixed charge on ger-
manium and is, therefore, especially suited for the passivation of highly
doped n-type germanium surfaces. The chemical passivation mecha-
nism of POx/Al2O3 was found to be related to the passivation of sur-
face defects by hydrogen, which is mobilized by the formation of
AlPO4 upon annealing. This process occurs already at 250 �C, which is
lower than on silicon, suggesting an effect of the nature of the substrate
on this process. The GeOx interlayer is reduced and removed due to a
sort of interfacial “self-cleaning” process upon deposition of POx/Al2O3

on germanium, which may in part explain the excellent surface passiv-
ation, and could allow simplified workflows for device fabrication. This
investigation shows that POx/Al2O3 is a highly promising passivation
scheme on germanium, and it contributes to the understanding of the
passivation mechanisms. This understanding can be highly useful for
the application of POx/Al2O3 stacks for surface passivation in next gen-
eration germanium-based electronic and photonic devices.

See the supplementary material for more details on the deposi-
tion processes and an additional corona-lifetime measurement of POx/
Al2O3 on germanium.
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