255 research outputs found
Against Quantum Noise
This is a brief description of how to protect quantum states from dissipation
and decoherence that arise due to uncontrolled interactions with the
environment. We discuss recoherence and stabilisation of quantum states based
on two techniques known as "symmetrisation" and "quantum error correction". We
illustrate our considerations with the most popular quantum-optical model of
the system-environment interaction, commonly used to describe spontaneous
emission, and show the benefits of quantum error correction in this case.Comment: 12 pages. Presented at the International Conference "Quantum Optics
IV", Jaszowiec, Poland, June 17-24 1997. An introductory overview of quantum
dissipation and error correction. Late submission to the archive due to
requests and the limited availability of the journa
Classical and quantum capacities of a fully correlated amplitude damping channel
We study information transmission over a fully correlated amplitude damping
channel acting on two qubits. We derive the single-shot classical channel
capacity and show that entanglement is needed to achieve the channel best
performance. We discuss the degradability properties of the channel and
evaluate the quantum capacity for any value of the noise parameter. We finally
compute the entanglement-assisted classical channel capacity.Comment: 16 pages, 9 figure
Information transmission over an amplitude damping channel with an arbitrary degree of memory
We study the performance of a partially correlated amplitude damping channel
acting on two qubits. We derive lower bounds for the single-shot classical
capacity by studying two kinds of quantum ensembles, one which allows to
maximize the Holevo quantity for the memoryless channel and the other allowing
the same task but for the full-memory channel. In these two cases, we also show
the amount of entanglement which is involved in achieving the maximum of the
Holevo quantity. For the single-shot quantum capacity we discuss both a lower
and an upper bound, achieving a good estimate for high values of the channel
transmissivity. We finally compute the entanglement-assisted classical channel
capacity.Comment: 17 pages, 7 figure
Quantum channel detection
We present a method to detect properties of quantum channels, assuming that
some a priori information about the form of the channel is available. The
method is based on a correspondence with entanglement detection methods for
multipartite density matrices based on witness operators. We first illustrate
the method in the case of entanglement breaking channels and non separable
random unitary channels, and show how it can be implemented experimentally by
means of local measurements. We then study the detection of non separable maps
and show that for pairs of systems of dimension higher than two the detection
operators are not the same as in the random unitary case, highlighting a richer
separability structure of quantum channels with respect to quantum states.
Finally we consider the set of PPT maps, developing a technique to reveal NPT
maps.Comment: 7 pages, 4 figures, published versio
On Quantum Algorithms
Quantum computers use the quantum interference of different computational
paths to enhance correct outcomes and suppress erroneous outcomes of
computations. In effect, they follow the same logical paradigm as
(multi-particle) interferometers. We show how most known quantum algorithms,
including quantum algorithms for factorising and counting, may be cast in this
manner. Quantum searching is described as inducing a desired relative phase
between two eigenvectors to yield constructive interference on the sought
elements and destructive interference on the remaining terms.Comment: 15 pages, 8 figure
Stabilisation of Quantum Computations by Symmetrisation
We propose a method for the stabilisation of quantum computations (including
quantum state storage). The method is based on the operation of projection into
, the symmetric subspace of the full state space of redundant
copies of the computer. We describe an efficient algorithm and quantum network
effecting --projection and discuss the stabilising effect of the
proposed method in the context of unitary errors generated by hardware
imprecision, and nonunitary errors arising from external environmental
interaction. Finally, limitations of the method are discussed.Comment: 20 pages LaTeX, 2 postscript figure
Equi-entangled bases in arbitrary dimensions
For the space of two identical systems of arbitrary dimensions, we introduce
a continuous family of bases with the following properties: i) the bases are
orthonormal, ii) in each basis, all the states have the same values of
entanglement, and iii) they continuously interpolate between the product basis
and the maximally entangled basis. The states thus constructed may find
applications in many areas related to quantum information science including
quantum cryptography, optimal Bell tests and investigation of enhancement of
channel capacity due to entanglement.Comment: 10 pages, 2 figures, 1 table, Accepted for publication in Phys. Rev.
Error Correction in Quantum Communication
We show how procedures which can correct phase and amplitude errors can be
directly applied to correct errors due to quantum entanglement. We specify
general criteria for quantum error correction, introduce quantum versions of
the Hamming and the Gilbert-Varshamov bounds and comment on the practical
implementation of quantum codes.Comment: 9 pages, LaTex fil
Generation and detection of bound entanglement
We propose a method for the experimental generation of two different families
of bound entangled states of three qubits. Our method is based on the explicit
construction of a quantum network that produces a purification of the desired
state. We also suggest a route for the experimental detection of bound
entanglement, by employing a witness operator plus a test of the positivity of
the partial transposes
Experimental generation of entanglement from classical correlations via non-unital local noise
We experimentally show how classical correlations can be turned into quantum
entanglement, via the presence of non-unital local noise and the action of a
CNOT gate. We first implement a simple two-qubit protocol in which entanglement
production is not possible in the absence of local non-unital noise, while
entanglement arises with the introduction of noise, and is proportional to the
degree of noisiness. We then perform a more elaborate four-qubit experiment, by
employing two hyperentangled photons initially carrying only classical
correlations. We demonstrate a scheme where the entanglement is generated via
local non-unital noise, with the advantage to be robust against local unitaries
performed by an adversary.Comment: 8 pages, 4 figure
- âŠ