13 research outputs found

    Monitoring deformations of infrastructure networks:A fully automated GIS integration and analysis of InSAR time-series

    Get PDF
    Ageing stock and extreme weather events pose a threat to the safety of infrastructure networks. In most countries, funding allocated to infrastructure management is insufficient to perform systematic inspections over large transport networks. As a result, early signs of distress can develop unnoticed, potentially leading to catastrophic structural failures. Over the past 20 years, a wealth of literature has demonstrated the capability of satellite-based Synthetic Aperture Radar Interferometry (InSAR) to accurately detect surface deformations of different types of assets. Thanks to the high accuracy and spatial density of measurements, and a short revisit time, space-borne remote-sensing techniques have the potential to provide a cost-effective and near real-time monitoring tool. Whilst InSAR techniques offer an effective approach for structural health monitoring, they also provide a large amount of data. For civil engineering procedures, these need to be analysed in combination with large infrastructure inventories. Over a regional scale, the manual extraction of InSAR-derived displacements from individual assets is extremely time-consuming and an automated integration of the two datasets is essential to effectively assess infrastructure systems. This paper presents a new methodology based on the fully automated integration of InSAR-based measurements and Geographic Information System-infrastructure inventories to detect potential warnings over extensive transport networks. A Sentinel dataset from 2016 to 2019 is used to analyse the Los Angeles highway and freeway network, while the Italian motorway network is evaluated by using open access ERS/Envisat datasets between 1992 and 2010, COSMO-SkyMed datasets between 2008 and 2014 and Sentinel datasets between 2014 and 2020. To demonstrate the flexibility of the proposed methodology to different SAR sensors and infrastructure classes, the analysis of bridges and viaducts in the two test areas is also performed. The outcomes highlight the potential of the proposed methodology to be integrated into structural health monitoring systems and improve current procedures for transport network management.</p

    Combining remote sensing techniques and field surveys for post‑earthquake reconnaissance missions

    Get PDF
    Remote reconnaissance missions are promising solutions for the assessment of earthquake induced structural damage and cascading geological hazards. Space-borne remote sensing can complement in-field missions when safety and accessibility concerns limit post-earthquake operations on the ground. However, the implementation of remote sensing techniques in post-disaster missions is limited by the lack of methods that combine different techniques and integrate them with field survey data. This paper presents a new approach for rapid post-earthquake building damage assessment and landslide mapping, based on Synthetic Aperture Radar (SAR) data. The proposed texture-based building damage classification approach exploits very high resolution post-earthquake SAR data integrated with building survey data. For landslide mapping, a backscatter intensity-based landslide detection approach, which also includes the separation between landslides and flooded areas, is combined with optical-based manual inventories. The approach was implemented during the joint Structural Extreme Event Reconnaissance, GeoHazards International and Earthquake Engineering Field Investigation Team mission that followed the 2021 Haiti Earthquake and Tropical Cyclone Grace

    Lessons for Remote Post-earthquake Reconnaissance from the 14 August 2021 Haiti Earthquake

    Get PDF
    On 14th August 2021, a magnitude 7.2 earthquake struck the Tiburon Peninsula in the Caribbean nation of Haiti, approximately 150 km west of the capital Port-au-Prince. Aftershocks up to moment magnitude 5.7 followed and over 1,000 landslides were triggered. These events led to over 2,000 fatalities, 15,000 injuries and more than 137,000 structural failures. The economic impact is of the order of US$1.6 billion. The on-going Covid pandemic and a complex political and security situation in Haiti meant that deploying earthquake engineers from the UK to assess structural damage and identify lessons for future building construction was impractical. Instead, the Earthquake Engineering Field Investigation Team (EEFIT) carried out a hybrid mission, modelled on the previous EEFIT Aegean Mission of 2020. The objectives were: to use open-source information, particularly remote sensing data such as InSAR and Optical/Multispectral imagery, to characterise the earthquake and associated hazards; to understand the observed strong ground motions and compare these to existing seismic codes; to undertake remote structural damage assessments, and to evaluate the applicability of the techniques used for future post-disaster assessments. Remote structural damage assessments were conducted in collaboration with the Structural Extreme Events Reconnaissance (StEER) team, who mobilised a group of local non-experts to rapidly record building damage. The EEFIT team undertook damage assessment for over 2,000 buildings comprising schools, hospitals, churches and housing to investigate the impact of the earthquake on building typologies in Haiti. This paper summarises the mission setup and findings, and discusses the benefits, and difficulties, encountered during this hybrid reconnaissance mission.</jats:p

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Remote Reconnaissance Mission to the 14th August 2021 Haiti Earthquake; remote sensing and building damage assessments&amp;#160;

    Get PDF
    &amp;lt;p&amp;gt;Post-earthquake reconnaissance missions are critical to understand the event characteristics, identify building and infrastructure vulnerabilities, and improve future construction practice. However, in-field missions can present logistic and safety challenges that do not make them viable in every post-disaster scenario. Remote sensing technique can be used to rapidly collect a large amount information that can be used to enrich the post-event learning process. While the possibility to deploy teams in the field remain a valuable asset for an integrated understanding of technical and socio-economic factors, a mix of remote and in-field reconnaissance activities can be a way forward in post-disaster management.&amp;lt;/p&amp;gt;&amp;lt;p&amp;gt;This work presents the results of a hybrid mission mobilised by the Earthquake Engineering Field Investigation Team (EEFIT) after the 2021 Haiti earthquake. On 14 August 2021, a 7.2 magnitude earthquake struck the Tiburon Peninsula in the Caribbean nation of Haiti, approximately 150km east of the capital Port au Prince. The event was followed by numerous aftershocks up to magnitude 5.7, and tiggered over 1000 landslides. Over 2000 people lost their lives, with over 15,000 injured and over 137,000 houses damaged or destroyed. The estimated economic impact is of the order of US$1.6 billion. Due the complex political and security situation in Haiti, coupled with the global pandemic, a full in field mission was not considered feasible, so a hybrid mission was designed instead.&amp;lt;/p&amp;gt;&amp;lt;p&amp;gt;First, open-source information was collected and used to characterise the seismic event, analyse the strong ground motion and compare to established national and international earthquake codes and standard. Second, remote sensing techniques including Interferometric Synthetic Aperture Radar (InSAR) and Optical/Multispectral imagery were used to understand the earthquake mechanism, the ground displacement distribution and the possibility to detect landslide on a regional scale. The general applicability of remote sensing technique in the context of post disaster assessment was also evaluated. Finally, the earthquake impact on different building typologies in Haiti was investigated through the damage assessment of over 2000 buildings comprising schools, hospitals, churches and housing. This was done in collaboration with the Structural Extreme Events Reconnaissance (StEER) team, who mobilised a team of local non-experts to rapidly record building damage.&amp;lt;/p&amp;gt;&amp;lt;p&amp;gt;This talk summarises the mission setup and findings, and discusses the benefits of and difficulties encountered during this hybrid reconnaissance.&amp;lt;/p&amp;gt;</jats:p

    "Delirium Day": A nationwide point prevalence study of delirium in older hospitalized patients using an easy standardized diagnostic tool

    Get PDF
    Background: To date, delirium prevalence in adult acute hospital populations has been estimated generally from pooled findings of single-center studies and/or among specific patient populations. Furthermore, the number of participants in these studies has not exceeded a few hundred. To overcome these limitations, we have determined, in a multicenter study, the prevalence of delirium over a single day among a large population of patients admitted to acute and rehabilitation hospital wards in Italy. Methods: This is a point prevalence study (called "Delirium Day") including 1867 older patients (aged 65 years or more) across 108 acute and 12 rehabilitation wards in Italian hospitals. Delirium was assessed on the same day in all patients using the 4AT, a validated and briefly administered tool which does not require training. We also collected data regarding motoric subtypes of delirium, functional and nutritional status, dementia, comorbidity, medications, feeding tubes, peripheral venous and urinary catheters, and physical restraints. Results: The mean sample age was 82.0 ± 7.5 years (58 % female). Overall, 429 patients (22.9 %) had delirium. Hypoactive was the commonest subtype (132/344 patients, 38.5 %), followed by mixed, hyperactive, and nonmotoric delirium. The prevalence was highest in Neurology (28.5 %) and Geriatrics (24.7 %), lowest in Rehabilitation (14.0 %), and intermediate in Orthopedic (20.6 %) and Internal Medicine wards (21.4 %). In a multivariable logistic regression, age (odds ratio [OR] 1.03, 95 % confidence interval [CI] 1.01-1.05), Activities of Daily Living dependence (OR 1.19, 95 % CI 1.12-1.27), dementia (OR 3.25, 95 % CI 2.41-4.38), malnutrition (OR 2.01, 95 % CI 1.29-3.14), and use of antipsychotics (OR 2.03, 95 % CI 1.45-2.82), feeding tubes (OR 2.51, 95 % CI 1.11-5.66), peripheral venous catheters (OR 1.41, 95 % CI 1.06-1.87), urinary catheters (OR 1.73, 95 % CI 1.30-2.29), and physical restraints (OR 1.84, 95 % CI 1.40-2.40) were associated with delirium. Admission to Neurology wards was also associated with delirium (OR 2.00, 95 % CI 1.29-3.14), while admission to other settings was not. Conclusions: Delirium occurred in more than one out of five patients in acute and rehabilitation hospital wards. Prevalence was highest in Neurology and lowest in Rehabilitation divisions. The "Delirium Day" project might become a useful method to assess delirium across hospital settings and a benchmarking platform for future surveys
    corecore