58 research outputs found

    Increased Cardiovascular Reactivity to Acute Stress and Salt-Loading in Adult Male Offspring of Fat Fed Non-Obese Rats

    Get PDF
    Diet-induced obesity in rat pregnancy has been shown previously to be associated with consistently raised blood pressure in the offspring, attributed to sympathetic over-activation, but the relative contributions to this phenotype of maternal obesity versus raised dietary fat is unknown. Sprague-Dawley female rats were fed either a control (4.3% fat, n = 11) or lard-enriched (23.6% fat, n = 16) chow 10 days prior to mating, throughout pregnancy and lactation. In conscious adult (9-month-old) offspring cardiovascular parameters were measured (radiotelemetry). The short period of fat-feeding did not increase maternal weight versus controls and the baseline blood pressure was similar in offspring of fat fed dams (OF) and controls (OC). However, adult male OF showed heightened cardiovascular reactivity to acute restraint stress (p<0.01; Δ systolic blood pressure (SBP) and Δheart rate (HR)) with a prolonged recovery time compared to male OC. α1/ÎČ-adrenergic receptor blockade normalised the response. Also, after dietary salt-loading (8%-NaCl ad libitum for 1 week) male OF demonstrated higher SBP (p<0.05) in the awake phase (night-time) and increased low/high frequency ratio of power spectral density of HR variability versus OC. Baroreflex gain and basal power spectral density components of the heart rate or blood pressure were similar in male OF and OC. Minor abnormalities were evident in female OF. Fat feeding in the absence of maternal obesity in pregnant rats leads to altered sympathetic control of cardiovascular function in adult male offspring, and hypertension in response to stressor stimuli

    Autoantibodies against type I IFNs in humans with alternative NF-ÎșB pathway deficiency

    Get PDF

    CARMIL2

    No full text

    Seletalisib for activated PI3KÎŽ syndromes: open-label phase 1b and extension studies

    No full text
    Mutations in two genes can result in activated PI3KÎŽ syndrome (APDS), a rare immunodeficiency disease with limited therapeutic options. Seletalisib, a potent, selective PI3KÎŽ inhibitor, was evaluated in patients with APDS1 and APDS2. In the phase 1b study (European Clinical Trials Database 2015-002900-10) patients with genetic and clinical confirmation of APDS1 or APDS2 received 15-25 mg/d seletalisib for 12 wk. Patients could enter an extension study (European Clinical Trials Database 2015-005541). Primary endpoints were safety and tolerability, with exploratory efficacy and immunology endpoints. Seven patients (median age 15 years; APDS1 n = 3; APDS2 n = 4) received seletalisib; five completed the phase 1b study. For the extension study, four patients entered, one withdrew consent (week 24), three completed ≄84 wk of treatment. In the phase 1b study, patients had improved peripheral lymphadenopathy (n = 2), lung function (n = 1), thrombocyte counts (n = 1), and chronic enteropathy (n = 1). Overall, effects were maintained in the extension. In the phase 1b study, percentages of transitional B cells decreased, naive B cells increased, and senescent CD8 T cells decreased (human cells); effects were generally maintained in the extension. Seletalisib-related adverse events occurred in four of seven patients (phase 1b study: hepatic enzyme increased, dizziness, aphthous ulcer, arthralgia, arthritis, increased appetite, increased weight, restlessness, tendon disorder, and potential drug-induced liver injury) and one of four patients had adverse events in the extension (aphthous ulcer). Serious adverse events occurred in three of seven patients (phase 1b study: hospitalization, colitis, and potential drug-induced liver injury) and one of four patients had adverse events in the extension (stomatitis). Patients with APDS receiving seletalisib had improvements in variable clinical and immunological features, and a favorable risk-benefit profile was maintained for ≀96 wk

    A self-medication hypothesis for increased vulnerability to drug abuse in prenatally restraint stressed rats

    No full text
    Stress-related events that occur in the perinatal period can permanently change brain and behavior of the developing individual and there is increasing evidence that early-life adversity is a contributing factor in the etiology of drug abuse and mood disorders. Neural adaptations resulting from early-life stress may mediate individual differences in novelty responsiveness and in turn contribute to drug abuse vulnerability. Prenatal restraint stress (PRS) in rats is a well-documented model of early stress known to induce long-lasting neurobiological and behavioral alterations including impaired feedback mechanisms of the HPA axis, enhanced novelty seeking, and increased sensitiveness to psychostimulants as well as anxiety/depression-like behavior. Together with the HPA axis, functional alterations of the mesolimbic dopamine system and of the metabotropic glutamate receptors system appear to be involved in the addiction-like profile of PRS rats
    • 

    corecore