708 research outputs found

    Manufacture and Test of the Prototype 5 T Superconducting Undulator for the LHC Synchrotron Radiation Profile Monitor

    Get PDF
    A superconducting undulator wound with Nb-Ti based conductor, will be used in the LHC as a key part of the synchrotron radiation profile monitor system. Two undulators are needed, one per each circulating beam, providing 5 T in a 60 mm bore over two periods of 280 mm each. A full scale prototype has been designed and successfully tested in the end of 2004. In this paper, the electromagnetic and the mechanical design of the undulator are summarized. The fabrication of the prototype is described and the successful cold test results, both power test and magnetic flux density measurements, are reported

    The stress shadow induced by the 1975-1984 Krafla rifting episode

    Get PDF
    It has been posited that the 1975\u20131984 Krafla rifting episode in northern Iceland was responsible for a significant drop in the rate of earthquakes along the H\ufasav\uedk\u2010Flatey Fault (HFF), a transform fault that had previously been the source of several magnitude 6\u20137 earthquakes. This compelling case of the existence of a stress shadow has never been studied in detail, and the implications of such a stress shadow remain an open question. According to rate\u2010state models, intense stress shadows cause tens of years of low seismicity rate followed by a faster recovery phase of rate increase. Here, we compare the long\u2010term predictions from a Coulomb stress model of the rifting episode with seismological observations from the SIL catalog (1995\u20132011) in northern Iceland. In the analyzed time frame, we find that the rift\u2010induced stress shadow coincides with the eastern half of the fault where the observed seismicity rates are found to be significantly lower than expected, given the historical earthquake activity there. We also find that the seismicity rates on the central part of the HFF increased significantly in the last 17 years, with the seismicity progressively recovering from west to east. Our observations confirm that rate\u2010state theory successfully describes the long\u2010term seismic rate variation during the reloading phase of a fault invested by a negative Coulomb stress. Coincident with this recovery, we find that the b\u2010value of the frequency\u2010magnitude distribution changed significantly over time. We conclude that the rift\u2010induced stress shadow not only decreased the seismic rate on the eastern part of the HFF but also temporarily modified how the system releases seismic energy, with more large magnitude events in proportion to small ones. This behavior is currently being overturned, as rift\u2010induced locking is now being compensated by tectonic forcing

    Matrix Models of Noncommutative (2d+1) Lattice Gauge Theories

    Full text link
    We investigate the problem of mapping, through the Morita equivalence, odd dimensional noncommutative lattice gauge theories onto suitable matrix models. We specialize our analysis to noncommutative three dimensional QED (NCQED) and scalar QED (NCSQED), for which we explicitly build the corresponding Matrix Model.Comment: 13 pages, LaTeX, no Figure

    Electrophoretic Deposition of WS2 Flakes on Nanoholes Arrays—Role of Used Suspension Medium

    Get PDF
    Here we optimized the electrophoretic deposition process for the fabrication of WS2 plasmonic nanohole integrated structures. We showed how the conditions used for site-selective deposition influenced the properties of the deposited flakes. In particular, we investigated the effect of different suspension buffers used during the deposition both in the efficiency of the process and in the stability of WS2 flakes, which were deposited on an ordered arrays of plasmonic nanostructures. We observed that a proper buffer can significantly facilitate the deposition process, keeping the material stable with respect to oxidation and contamination. Moreover, the integrated plasmonic structures that can be prepared with this process can be applied to enhanced spectroscopies and for the preparation of 2D nanopores

    Polyvinylamine membranes containing graphene-based nanofillers for carbon capture applications

    Get PDF
    In the present study, the separation performance of new self-standing polyvinylamine (PVAm) membranes loaded with few-layer graphene (G) and graphene oxide (GO) was evaluated, in view of their use in carbon capture applications. PVAm, provided by BASF as commercial product named Lupamin\u2122, was purified obtaining PVAm films with two degrees of purification: Low Grade (PVAm-LG) and High Grade (PVAm-HG). These two-grade purified PVAm were loaded with 3 wt% of graphene and graphene oxide to improve mechanical stability: indeed, pristine tested materials proved to be brittle when dry, while highly susceptible to swelling in humid conditions. Purification performances were assessed through FTIR-ATR spectroscopy, DSC and TGA analysis, which were carried out to characterize the pristine polymer and its nanocomposites. In addition, the membranes\u2032 fracture surfaces were observed through SEM analysis to evaluate the degree of dispersion. Water sorption and gas permeation tests were performed at 35 \ub0C at different relative humidity (RH), ranging from 50% to 95%. Overall, composite membranes showed improved mechanical stability at high humidity, and higher glass transition temperature (Tg) with respect to neat PVAm. Ideal CO2/N2 selectivity up to 80 was measured, paired with a CO2 permeability of 70 Barrer. The membranes\u2019 increased mechanical stability against swelling, even at high RH, without the need of any crosslinking, represents an interesting result in view of possible further development of new types of facilitated transport composite membranes

    A New Wood Surface Flame-Retardant Based on Poly-m-Aramid Electrospun Nanofibers

    Get PDF
    Poly(meta-phenylene isophtalamide) (PMIA) was processed via electrospinning to provide nanofibrous membranes with randomly and aligned fibers. Mechanical performance of such membranes was evaluated, applying a normalization procedure that takes into account the peculiar morphology of such complex substrate where voids can sum up to almost 80% of the sample volume. Random and aligned fibers membranes are applied onto wood panels to test their fire resistance in cone calorimetry when coated in polyaramidic thin nanofiber mats. Tests highlighted that random fibers provide a better fire protection, increasing Time to Ignition and decreasing the Fire Performance Index. Another important parameter affecting the performance is the adhesive system used to apply the nanofibers onto wood that is able to significantly modify the fire performance of the polyaramidic-coated wood panels. POLYM. ENG. SCI., 2019. (c) 2019 Society of Plastics Engineer
    • …
    corecore