392 research outputs found

    Product market reforms, labour market institutions and unemployment

    Get PDF
    We analyze the impact of product market competition on unemployment and wages, and how this depends on labour market institutions. We use differential changes in regulations across OECD countries over the 1980s and 1990s to identify the effects of competition. We find that increased product market competition reduces unemployment, and that it does so more in countries with labour market institutions that increase worker bargaining power. The theoretical intuition is that both firms with market power and unions with bargaining power are constrained in their behaviour by the elasticity of demand in the product market. We also find that the effect of increased competition on real wages is beneficial to workers, but less so when they have high bargaining power. Intuitively, real wages increase through a drop in the general price level, but workers with bargaining power lose out somewhat from a reduction in the rents that they had previously captured

    The location of innovative activity in Europe

    Get PDF
    In this paper we use new data to describe how firms from 15 European countries organise their innovative activities. The data matches firm level accounting data with information on the patents that those firms and their subsidiaries have applied for at the European Patents Office. We describe the data in detail

    Liposomal Encapsulation of Amoxicillin via Microfluidics with Subsequent Investigation of the Significance of PEGylated Therapeutics

    Get PDF
    With an increasing concern of global antimicrobial resistance, the efforts to improve the formulation of a narrowing library of therapeutic antibiotics must be confronted. The liposomal encapsulation of antibiotics using a novel and sustainable microfluidic method has been employed in this study to address this pressing issue, via a targeted, lower-dose medical approach. The study focusses upon microfluidic parameter optimisation, formulation stability, cytotoxicity, and future applications. Particle sizes of circa. 130 nm, with viable short-term (28-day) physical stability were obtained, using two different non-cytotoxic liposomal formulations, both of which displayed suitable antibacterial efficacy. The microfluidic method allowed for high encapsulation efficiencies (≈77 %) and the subsequent in vitro release profile suggested high limits of antibiotic dissociation from the nanovessels, achieving 90% release within 72 h. In addition to the experimental data, the growing use of poly(ethylene) glycol (PEG) within lipid-based formulations is discussed in relation to anti-PEG antibodies, highlighting the key pharmacological differences between PEGylated and non-PEGylated formulations and their respective advantages and drawbacks. It's surmised that in the case of the formulations used in this study, the addition of PEG upon the liposomal membrane would still be a beneficial feature to possess owing to beneficial features such as stability, antibiotic efficacy and the capacity to further modify the liposomal membrane.</p

    Mapping the substrate landscape of protein phosphatase 2A catalytic subunit PPP2CA

    Get PDF
    Protein phosphatase 2A (PP2A) is an essential Ser/Thr phosphatase. The PP2A holoenzyme complex comprises a scaffolding (A), regulatory (B), and catalytic (C) subunit, with PPP2CA being the principal catalytic subunit. The full scope of PP2A substrates in cells remains to be defined. To address this, we employed dTAG proteolysis-targeting chimeras to efficiently and selectively degrade dTAG-PPP2CA in homozygous knock-in HEK293 cells. Unbiased global phospho-proteomics identified 2,204 proteins with significantly increased phosphorylation upon dTAG-PPP2CA degradation, implicating them as potential PPP2CA substrates. A vast majority of these are novel. Bioinformatic analyses revealed involvement of the potential PPP2CA substrates in spliceosome function, cell cycle, RNA transport, and ubiquitin-mediated proteolysis. We identify a pSP/pTP motif as a predominant target for PPP2CA and confirm some of our phospho-proteomic data with immunoblotting. We provide an in-depth atlas of potential PPP2CA substrates and establish targeted degradation as a robust tool to unveil phosphatase substrates in cells.</p

    Mapping the substrate landscape of protein phosphatase 2A catalytic subunit PPP2CA

    Get PDF
    Protein phosphatase 2A (PP2A) is an essential Ser/Thr phosphatase. The PP2A holoenzyme complex comprises a scaffolding (A), regulatory (B), and catalytic (C) subunit, with PPP2CA being the principal catalytic subunit. The full scope of PP2A substrates in cells remains to be defined. To address this, we employed dTAG proteolysis-targeting chimeras to efficiently and selectively degrade dTAG-PPP2CA in homozygous knock-in HEK293 cells. Unbiased global phospho-proteomics identified 2,204 proteins with significantly increased phosphorylation upon dTAG-PPP2CA degradation, implicating them as potential PPP2CA substrates. A vast majority of these are novel. Bioinformatic analyses revealed involvement of the potential PPP2CA substrates in spliceosome function, cell cycle, RNA transport, and ubiquitin-mediated proteolysis. We identify a pSP/pTP motif as a predominant target for PPP2CA and confirm some of our phospho-proteomic data with immunoblotting. We provide an in-depth atlas of potential PPP2CA substrates and establish targeted degradation as a robust tool to unveil phosphatase substrates in cells.</p

    Kinase and channel activity of TRPM6 are co-ordinated by a dimerization motif and pocket interaction

    Get PDF
    Contains fulltext : 138516.pdf (publisher's version ) (Open Access)Mutations in the gene that encodes the atypical channel-kinase TRPM6 (transient receptor potential melastatin 6) cause HSH (hypomagnesaemia with secondary hypocalcaemia), a disorder characterized by defective intestinal Mg2+ transport and impaired renal Mg2+ reabsorption. TRPM6, together with its homologue TRPM7, are unique proteins as they combine an ion channel domain with a C-terminally fused protein kinase domain. How TRPM6 channel and kinase activity are linked is unknown. Previous structural analysis revealed that TRPM7 possesses a non-catalytic dimerization motif preceding the kinase domain. This interacts with a dimerization pocket lying within the kinase domain. In the present study, we provide evidence that the dimerization motif in TRPM6 plays a critical role in regulating kinase activity as well as ion channel activity. We identify mutations within the TRPM6 dimerization motif (Leu1718 and Leu1721) or dimerization pocket (L1743A, Q1832K, A1836N, L1840A and L1919Q) that abolish dimerization and establish that these mutations inhibit protein kinase activity. We also demonstrate that kinase activity of a dimerization motif mutant can be restored by addition of a peptide encompassing the dimerization motif. Moreover, we observe that mutations that disrupt the dimerization motif and dimerization pocket interaction greatly diminish TRPM6 ion channel activity, in a manner that is independent of kinase activity. Finally, we analyse the impact on kinase activity of ten disease-causing missense mutations that lie outwith the protein kinase domain of TRPM6. This revealed that one mutation lying nearby the dimerization motif (S1754N), found previously to inhibit channel activity, abolished kinase activity. These results provide the first evidence that there is structural co-ordination between channel and kinase activity, which is mediated by the dimerization motif and pocket interaction. We discuss that modulation of this interaction could comprise a major regulatory mechanism by which TRPM6 function is controlled

    Influenza epidemiology, vaccine coverage and vaccine effectiveness in children admitted to sentinel Australian hospitals in 2014: The influenza complications alert network (FluCAN)

    Full text link
    The Influenza Complications Alert Network (FluCAN) is a sentinel hospital-based surveillance programme operating in all states and territories in Australia. We summarise the epidemiology of children hospitalised with laboratory-confirmed influenza in 2014 and reports on the effectiveness of inactivated trivalent inactivated vaccine (TIV) in children. In this observational study, cases were defined as children admitted with acute respiratory illness (ARI) with influenza confirmed by PCR. Controls were hospitalised children with ARI testing negative for influenza. Vaccine effectiveness (VE) was estimated as 1 minus the odds ratio of vaccination in influenza positive cases compared with test-negative controls using conditional logistic regression models. From April until October 2014, 402 children were admitted with PCR-confirmed influenza. Of these, 28% were aged < 1 year, 16% were Indigenous, and 39% had underlying conditions predisposing to severe influenza. Influenza A was detected in 90% of cases of influenza; influenza A(H1N1)pdm09 was the most frequent subtype (109/141 of subtyped cases) followed by A(H3N2) (32/141). Only 15% of children with influenza received antiviral therapy. The adjusted VE of one or more doses of TIV for preventing hospitalised influenza was estimated at 55.5% (95% confidence intervals (CI): 11.6–77.6%). Effectiveness against influenza A(H1N1)pdm09 was high (91.6%, 95% CI: 36.0–98.9%) yet appeared poor against H3N2. In summary, the 2014 southern hemisphere TIV was moderately effective against severe influenza in children. Significant VE was observed against influenza A(H1N1)pdm0

    Development of BromoTag:A “Bump-&amp;-Hole”-PROTAC system to induce potent, rapid, and selective degradation of tagged target proteins

    Get PDF
    [Image: see text] Small-molecule-induced protein depletion technologies, also called inducible degrons, allow degradation of genetically engineered target proteins within cells and animals. Here, we design and develop the BromoTag, a new inducible degron system comprising a Brd4 bromodomain L387A variant as a degron tag that allows direct recruitment by heterobifunctional bumped proteolysis targeting chimeras (PROTACs) to hijack the VHL E3 ligase. We describe extensive optimization and structure–activity relationships of our bump-and-hole–PROTACs using a CRISPR knock-in cell line expressing model target BromoTag-Brd2 at endogenous levels. Collectively, our cellular and mechanistic data qualifies bumped PROTAC AGB1 as a potent, fast, and selective degrader of BromoTagged proteins, with a favorable pharmacokinetic profile in mice. The BromoTag adds to the arsenal of chemical genetic degradation tools allowing us to manipulate protein levels to interrogate the biological function and therapeutic potential in cells and in vivo
    • 

    corecore