52 research outputs found

    Cholesterol and Lipoprotein Dynamics in a Hibernating Mammal

    Get PDF
    Hibernating mammals cease feeding during the winter and rely primarily on stored lipids to fuel alternating periods of torpor and arousal. How hibernators manage large fluxes of lipids and sterols over the annual hibernation cycle is poorly understood. The aim of this study was to investigate lipid and cholesterol transport and storage in ground squirrels studied in spring, summer, and several hibernation states. Cholesterol levels in total plasma, HDL and LDL particles were elevated in hibernators compared with spring or summer squirrels. Hibernation increased plasma apolipoprotein A-I expression and HDL particle size. Expression of cholesterol 7 alpha-hydroxylase was 13-fold lower in hibernators than in active season squirrels. Plasma triglycerides were reduced by fasting in spring but not summer squirrels. In hibernators plasma β-hydroxybutyrate was elevated during torpor whereas triglycerides were low relative to normothermic states. We conclude that the switch to a lipid-based metabolism during winter, coupled with reduced capacity to excrete cholesterol creates a closed system in which efficient use of lipoproteins is essential for survival

    Feasibility Study of Two Cassini Reaction Wheel/Thruster Hybrid Controllers

    No full text

    Reaction Wheel Friction Analysis Methodology and On-orbit Experience (Invited)

    No full text

    Pointing-Stability Performance of the Cassini Spacecraft

    No full text

    Oncostatin M Receptor Type II Knockout Mitigates Inflammation and Improves Survival from Sepsis in Mice

    No full text
    Sepsis remains one of the leading causes of death worldwide. Oncostatin M (OSM), an interleukin (IL)-6 family cytokine, can be found at high levels in septic patients. However, little is known about its role in sepsis. This study aimed to determine if the genetic knockout of OSM receptor (OSMR) type II signaling would improve survival in a murine model of sepsis. Aged (>50 weeks) OSMR type II knockout (KO) mice and wild-type (WT) littermates received an intraperitoneal injection of fecal slurry (FS) or vehicle. The KO mice had better survival 48 h after the injection of FS than the WT mice (p = 0.005). Eighteen hours post-FS injection, the KO mice had reduced peritoneal, serum, and tissue cytokine levels (including IL-1β, IL-6, TNFα, KG/GRO, and IL-10) compared to the WT mice (p + F4/80+ Ly6chigh+ macrophages in the peritoneum of KO mice compared to WT mice (34 ± 6 vs. 4 ± 3%, PInt = 0.005). Isolated peritoneal macrophages from aged KO mice had better live E. coli killing capacity than those from WT mice (p 9)/mL; p < 0.001). In summary, deficiency in OSMR type II receptor signaling provided a survival benefit in the progression of sepsis. This coincided with reduced serum levels of pro-inflammatory (IL-1β, TNFα, and KC/GRO) and anti-inflammatory markers (IL-10), increased bacterial killing ability of macrophages, and reduced macrophage infiltration into to site of infection
    • …
    corecore