107 research outputs found

    Modeling coronal magnetic field using spherical geometry: cases with several active regions

    Full text link
    The magnetic fields in the solar atmosphere structure the plasma, store free magnetic energy and produce a wide variety of active solar phenomena, like flare and coronal mass ejections(CMEs). The distribution and strength of magnetic fields are routinely measured in the solar surface(photosphere). Therefore, there is considerable interest in accurately modeling the 3D structure of the coronal magnetic field using photospheric vector magnetograms. Knowledge of the 3D structure of magnetic field lines also help us to interpret other coronal observations, e.g., EUV images of the radiating coronal plasma. Nonlinear force-free field (NLFFF) models are thought to be viable tools for those task. Usually those models use Cartesian geometry. However, the spherical nature of the solar surface cannot be neglected when the field of view is large. In this work, we model the coronal magnetic field above multiple active regions using NLFFF extrapolation code using vector magnetograph data from the Synoptic Optical Long-term Investigations of the Sun survey (SOLIS)/ Vector Spectromagnetograph (VSM) as a boundary conditions. We compare projections of the resulting magnetic field lines solutions with their respective coronal EUV-images from the Atmospheric Imaging Assembly (SDO/AIA) observed on October 11, 2011 and November 13, 2012. This study has found that the NLFFF model in spherical geometry reconstructs the magnetic configurations for several active regions which agrees with observations. During October 11, 2011 observation, there are substantial number of trans-equatorial loops carrying electric current.Comment: 3 Figures, Submitted to Astrophysics and Space Science Journa

    The Dynamic Formation of Prominence Condensations

    Full text link
    We present simulations of a model for the formation of a prominence condensation in a coronal loop. The key idea behind the model is that the spatial localization of loop heating near the chromosphere leads to a catastrophic cooling in the corona (Antiochos & Klimchuk 1991). Using a new adaptive grid code, we simulate the complete growth of a condensation, and find that after approx. 5,000 s it reaches a quasi-steady state. We show that the size and the growth time of the condensation are in good agreement with data, and discuss the implications of the model for coronal heating and SOHO/TRACE observations.Comment: Astrophysical Journal latex file, 20 pages, 7 b-w figures (gif files

    Validation of Model Forecasts of the Ambient Solar Wind

    Get PDF
    Independent and automated validation is a vital step in the progression of models from the research community into operational forecasting use. In this paper we describe a program in development at the CCMC to provide just such a comprehensive validation for models of the ambient solar wind in the inner heliosphere. We have built upon previous efforts published in the community, sharpened their definitions, and completed a baseline study. We also provide first results from this program of the comparative performance of the MHD models available at the CCMC against that of the Wang-Sheeley-Arge (WSA) model. An important goal of this effort is to provide a consistent validation to all available models. Clearly exposing the relative strengths and weaknesses of the different models will enable forecasters to craft more reliable ensemble forecasting strategies. Models of the ambient solar wind are developing rapidly as a result of improvements in data supply, numerical techniques, and computing resources. It is anticipated that in the next five to ten years, the MHD based models will supplant semi-empirical potential based models such as the WSA model, as the best available forecast models. We anticipate that this validation effort will track this evolution and so assist policy makers in gauging the value of past and future investment in modeling support

    Simulations of Astrophysical Fluid Instabilities

    Get PDF
    We present direct numerical simulations of mixing at Rayleigh-Taylor unstable interfaces performed with the FLASH code, developed at the ASCI/Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago. We present initial results of single-mode studies in two and three dimensions. Our results indicate that three-dimensional instabilities grow significantly faster than two-dimensional instabilities and that grid resolution can have a significant effect on instability growth rates. We also find that unphysical diffusive mixing occurs at the fluid interface, particularly in poorly resolved simulations.Comment: 3 pages, 1 figure. To appear in the proceedings of the 20th Texas Symposium on Relativistic Astrophysic

    Three-dimensional adaptive evolution of gravitational waves in numerical relativity

    Get PDF
    Adaptive techniques are crucial for successful numerical modeling of gravitational waves from astrophysical sources such as coalescing compact binaries, since the radiation typically has wavelengths much larger than the scale of the sources. We have carried out an important step toward this goal, the evolution of weak gravitational waves using adaptive mesh refinement in the Einstein equations. The 2-level adaptive simulation is compared with unigrid runs at coarse and fine resolution, and is shown to track closely the features of the fine grid run.Comment: REVTeX, 7 pages, including three figures; submitted to Physical Review

    Large-Scale Simulations of Clusters of Galaxies

    Full text link
    We discuss some of the computational challenges encountered in simulating the evolution of clusters of galaxies. Eulerian adaptive mesh refinement (AMR) techniques can successfully address these challenges but are currently being used by only a few groups. We describe our publicly available AMR code, FLASH, which uses an object-oriented framework to manage its AMR library, physics modules, and automated verification. We outline the development of the FLASH framework to include collisionless particles, permitting it to be used for cluster simulation.Comment: 3 pages, 3 figures, to appear in Proceedings of the VII International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2000), Fermilab, Oct. 16-20, 200

    NASA GSFC CCMC Recent Model Validation Activities

    Get PDF
    The Community Coordinated Modeling Center (CCMC) holds the largest assembly of state-of-the-art physics-based space weather models developed by the international space physics community. In addition to providing the community easy access to these modern space research models to support science research, its another primary goal is to test and validate models for transition from research to operations. In this presentation, we provide an overview of the space science models available at CCMC. Then we will focus on the community-wide model validation efforts led by CCMC in all domains of the Sun-Earth system and the internal validation efforts at CCMC to support space weather servicesjoperations provided its sibling organization - NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov). We will also discuss our efforts in operational model validation in collaboration with NOAA/SWPC
    corecore