330 research outputs found

    Local, hierarchic, and iterative reconstructors for adaptive optics

    Get PDF
    Adaptive optics systems for future large optical telescopes may require thousands of sensors and actuators. Optimal reconstruction of phase errors using relative measurements requires feedback from every sensor to each actuator, resulting in computational scaling for n actuators of n^2 . The optimum local reconstructor is investigated, wherein each actuator command depends only on sensor information in a neighboring region. The resulting performance degradation on global modes is quantified analytically, and two approaches are considered for recovering "global" performance. Combining local and global estimators in a two-layer hierarchic architecture yields computations scaling with n^4/3 ; extending this approach to multiple layers yields linear scaling. An alternative approach that maintains a local structure is to allow actuator commands to depend on both local sensors and prior local estimates. This iterative approach is equivalent to a temporal low-pass filter on global information and gives a scaling of n^3/2 . The algorithms are simulated by using data from the Palomar Observatory adaptive optics system. The analysis is general enough to also be applicable to active optics or other systems with many sensors and actuators

    Geoengineering: Whiter skies?

    Get PDF
    One proposed side effect of geoengineering with stratospheric sulfate aerosols is sky whitening during the day and afterglows near sunset, as is seen after large volcanic eruptions. Sulfate aerosols in the stratosphere would increase diffuse light received at the surface, but with a non-uniform spectral distribution. We use a radiative transfer model to calculate spectral irradiance for idealized size distributions of sulfate aerosols. A 2% reduction in total irradiance, approximately enough to offset anthropogenic warming for a doubling of CO_2 concentrations, brightens the sky (increase in diffuse light) by 3 to 5 times, depending on the aerosol size distribution. The relative increase is less when optically thin cirrus clouds are included in our simulations. Particles with small radii have little influence on the shape of the spectra. Particles of radius ∼0.5 μm preferentially increase diffuse irradiance in red wavelengths, whereas large particles (∼0.9 μm) preferentially increase diffuse irradiance in blue wavelengths. Spectra show little change in dominant wavelength, indicating little change in sky hue, but all particle size distributions produce an increase in white light relative to clear sky conditions. Diffuse sky spectra in our simulations of geoengineering with stratospheric aerosols are similar to those of average conditions in urban areas today

    Untitled

    Get PDF

    Untitled

    Get PDF

    Control and Alignment of Segmented-Mirror Telescopes: Matrices, Modes, and Error Propagation

    Get PDF
    Starting from the successful Keck telescope design, we construct and analyze the control matrix for the active control system of the primary mirror of a generalized segmented-mirror telescope, with up to 1000 segments and including an alternative sensor geometry to the one used at Keck. In particular we examine the noise propagation of the matrix and its consequences for both seeing-limited and diffraction-limited observations. The associated problem of optical alignment of such a primary mirror is also analyzed in terms of the distinct but related matrices that govern this latter problem

    Internal impacted screw-locking pellet

    Get PDF
    An elongate fastener having an engaging surface engageable with an engaging surface of a fastener's mate includes a hole extending through a portion of the fastener and having a top opening and a bottom floor, a locking pellet disposed near the bottom floor, a discharge channel communicating between the pellet and through the engaging surface of the fastener and opening out toward the engaging surface of the fastener's mate, and an impact pin in the hole having a top portion protruding through the top opening and a bottom portion near the locking pellet, whereby the pin drives the locking pellet through the discharge channel against the engaging surfaces of the fastener and the fastener's mate whereby to lock the fastener against the fastener's mate

    Control challenges for extremely large telescopes

    Get PDF
    The next generation of large ground-based optical telescopes are likely to involve a highly segmented primary mirror that must be controlled in the presence of wind and other disturbances, resulting in a new set of challenges for control. The current design concept for the California Extremely Large Telescope (CELT) includes 1080 segments in the primary mirror, with the out-of-plane degrees of freedom actively controlled. In addition to the 3240 primary mirror actuators,the secondary mirror of the telescope will also require at least 5 degree of freedom control. The bandwidth of both control systems will be limited by coupling to structural modes. I discuss three control issues for extremely large telescopes in the context of the CELT design, describing both the status and remaining challenges. First, with many actuators and sensors, the cost and reliability of the control hardware is critical; the hardware requirements and current actuator design are discussed. Second, wind buffeting due to turbulence inside the telescope enclosure is likely to drive the control bandwidth higher, and hence limitations resulting from control-structure-interaction must be understood. Finally, the impact on the control architecture is briefly discussed
    • …
    corecore