301 research outputs found

    Bolaamphiphiles as a novel drug delivery system in the treatment of diseases of the brain

    Get PDF
    The incidence of central nervous system (CNS) diseases, such as glioblastoma, Alzheimer’s disease and Parkinson’s disease, will increase substantially in the next few decades. However, treatment for diseases of the brain is limited due to the restrictive physical and functional blood-brain barrier (BBB) dividing the brain and the vascular system. Bolaamphiphilic (BA) vesicles, produced from vernonia oil, encapsulate a wide range of therapeutic molecules, and offer an alternative drug delivery system to penetrate the brain to treat diseases of the CNS. We present novel anionic BA vesicles that cross biological barriers including the blood-brain barrier. BA vesicles were characterised by dynamic light scattering, transmission electron microscopy, zeta potential analysis and size exclusion column chromatography. In vitro studies were performed on numerous CNS-representative and other cell lines - BV2 microglia, SH-SY5Y neurones, LN229 glioblastoma, HEK-293T epithelia, hCMEC/D3 endothelia and HASTR/ci35 astrocytes. In vivo studies were performed using C57BL/6 male mice. A novel methodology was developed to permit synthesis of the novel BAs first described here, directly from vernonia oil, the starting material. This study has shown that a novel preparation of anionic BA form vesicles that encapsulate a range of different cargoes including tracer dyes and antibody fragments albeit with a low encapsulation efficiency. They do not influence cell viability or cause an acute immune response. They have been shown to penetrate the BBB in vivo. Analysis of the original BA material has shown to consist of two compounds, both of which have been synthesised and characterised. The original material synthesised from vernonia oil and used to produce BA vesicles was thought to be cationic. However, after profiling the vesicles synthesised were found to have a negative zeta potential demonstrating that they are novel. They were further tested and found to cross biological barriers in vitro. Newly synthesised vesicles require further characterisation and optimisation to improve stability and encapsulation efficiency. The original anionic BA material has been shown to cross the BBB within 30 minutes of intravenous injection. These results demonstrate that whilst further studies are required this is a candidate drug delivery system to treat diseases of the brain

    Investigation of \u3cem\u3ede novo\u3c/em\u3e cholesterol synthetic capacity in the gonads of goldfish (\u3cem\u3eCarassius auratus\u3c/em\u3e) exposed to the phytosterol beta-sitosterol

    Get PDF
    Total and intra-mitochondrial gonadal cholesterol concentrations are decreased in fish exposed to the phytoestrogen beta-sitosterol (beta-sit). The present study examined the potential for beta-sit to disrupt de novo cholesterol synthesis in the gonads of goldfish exposed to 200 microgram/g beta-sit and 10 microgram/g 17beta-estradiol (E2; estrogenic control) by intra-peritoneal Silastic® implants for 21 days. The de novo cholesterol synthetic capacity was estimated by incubating gonadal tissue with 14C-acetate for a period of 18 hours, followed by chloroform/methanol lipid extraction and thin layer chromatography (TLC) lipid separation. Lipid classes were confirmed using infrared spectroscopy. Plasma testosterone (T) and total cholesterol concentration were measured and gonadosomatic index (GSI) was calculated. Plasma T was significantly reduced in male beta-sit-treated fish compared to control and E2-treated fish (p \u3c 0.001). 14C-Acetate incorporation into cholesterol and cholesterol esters was not significantly different among treatment groups for male and female fish, however, 14C-enrichment was higher than expected in both triglycerides (TG) and free fatty acids (FFA). FFA incorporation was significantly higher in male control fish than either beta-sit or E2 treatments (p = 0.005). Plasma cholesterol concentration was significantly increased in the male beta-sit treatment group compared to controls (p = 0.027). These results indicate gonadal de novo cholesterol biosynthetic capacity is not disrupted by betasit or E2 treatment in early recrudescing male or female goldfish, while plasma cholesterol and steroid concentrations are sensitive to beta-sit exposure

    Electrodynamics of a Magnet Moving through a Conducting Pipe

    Full text link
    The popular demonstration involving a permanent magnet falling through a conducting pipe is treated as an axially symmetric boundary value problem. Specifically, Maxwell's equations are solved for an axially symmetric magnet moving coaxially inside an infinitely long, conducting cylindrical shell of arbitrary thickness at nonrelativistic speeds. Analytic solutions for the fields are developed and used to derive the resulting drag force acting on the magnet in integral form. This treatment represents a significant improvement over existing models which idealize the problem as a point dipole moving slowly inside a pipe of negligible thickness. It also provides a rigorous study of eddy currents under a broad range of conditions, and can be used for precision magnetic braking applications. The case of a uniformly magnetized cylindrical magnet is considered in detail, and a comprehensive analytical and numerical study of the properties of the drag force is presented for this geometry. Various limiting cases of interest involving the shape and speed of the magnet and the full range of conductivity and magnetic behavior of the pipe material are investigated and corresponding asymptotic formulas are developed.Comment: 20 pages, 3 figures; computer program posted to http://www.csus.edu/indiv/p/partovimh/magpipedrag.nb Submitted to the Canadian Journal of Physic

    Quelques motifs ornementaux utilisés par les indigènes de la N’Gounié (Gabon)

    Get PDF

    Les buffles du Gabon (Régions du Fernan- Vaz et de la N’Gounié)

    Get PDF

    Dans la brousse gabonaise

    Get PDF

    Investigation of de novo cholesterol synthetic capacity in the gonads of goldfish (Carassius auratus) exposed to the phytosterol beta-sitosterol

    Get PDF
    Total and intra-mitochondrial gonadal cholesterol concentrations are decreased in fish exposed to the phytoestrogen beta-sitosterol (beta-sit). The present study examined the potential for beta-sit to disrupt de novo cholesterol synthesis in the gonads of goldfish exposed to 200 microgram/g beta-sit and 10 microgram/g 17beta-estradiol (E2; estrogenic control) by intra-peritoneal Silastic(® )implants for 21 days. The de novo cholesterol synthetic capacity was estimated by incubating gonadal tissue with 14C-acetate for a period of 18 hours, followed by chloroform/methanol lipid extraction and thin layer chromatography (TLC) lipid separation. Lipid classes were confirmed using infrared spectroscopy. Plasma testosterone (T) and total cholesterol concentration were measured and gonadosomatic index (GSI) was calculated. Plasma T was significantly reduced in male beta-sit-treated fish compared to control and E2-treated fish (p < 0.001). 14C-Acetate incorporation into cholesterol and cholesterol esters was not significantly different among treatment groups for male and female fish, however, 14C-enrichment was higher than expected in both triglycerides (TG) and free fatty acids (FFA). FFA incorporation was significantly higher in male control fish than either beta-sit or E2 treatments (p = 0.005). Plasma cholesterol concentration was significantly increased in the male beta-sit treatment group compared to controls (p = 0.027). These results indicate gonadal de novo cholesterol biosynthetic capacity is not disrupted by beta-sit or E2 treatment in early recrudescing male or female goldfish, while plasma cholesterol and steroid concentrations are sensitive to beta-sit exposure

    Peptidylarginine Deiminase Isozyme-Specific PAD2, PAD3 and PAD4 Inhibitors Differentially Modulate Extracellular Vesicle Signatures and Cell Invasion in Two Glioblastoma Multiforme Cell Lines

    Get PDF
    Glioblastoma multiforme (GBM) is an aggressive adult brain tumour with poor prognosis. Roles for peptidylarginine deiminases (PADs) in GBM have recently been highlighted. Here, two GBM cell lines were treated with PAD2, PAD3 and PAD4 isozyme-specific inhibitors. Effects were assessed on extracellular vesicle (EV) signatures, including EV-microRNA cargo (miR21, miR126 and miR210), and on changes in cellular protein expression relevant for mitochondrial housekeeping (prohibitin (PHB)) and cancer progression (stromal interaction molecule 1 (STIM-1) and moesin), as well as assessing cell invasion. Overall, GBM cell-line specific differences for the three PAD isozyme-specific inhibitors were observed on modulation of EV-signatures, PHB, STIM-1 and moesin protein levels, as well as on cell invasion. The PAD3 inhibitor was most effective in modulating EVs to anti-oncogenic signatures (reduced miR21 and miR210, and elevated miR126), to reduce cell invasion and to modulate protein expression of pro-GBM proteins in LN229 cells, while the PAD2 and PAD4 inhibitors were more effective in LN18 cells. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for deiminated proteins relating to cancer, metabolism and inflammation differed between the two GBM cell lines. Our findings highlight roles for the different PAD isozymes in the heterogeneity of GBM tumours and the potential for tailored PAD-isozyme specific treatment

    Peptidylarginine Deiminases Post-Translationally Deiminate Prohibitin and Modulate Extracellular Vesicle Release and MicroRNAs in Glioblastoma Multiforme.

    Get PDF
    Glioblastoma multiforme (GBM) is the most aggressive form of adult primary malignant brain tumour with poor prognosis. Extracellular vesicles (EVs) are a key-mediator through which GBM cells promote a pro-oncogenic microenvironment. Peptidylarginine deiminases (PADs), which catalyze the post-translational protein deimination of target proteins, are implicated in cancer, including via EV modulation. Pan-PAD inhibitor Cl-amidine affected EV release from GBM cells, and EV related microRNA cargo, with reduced pro-oncogenic microRNA21 and increased anti-oncogenic microRNA126, also in combinatory treatment with the chemotherapeutic agent temozolomide (TMZ). The GBM cell lines under study, LN18 and LN229, differed in PAD2, PAD3 and PAD4 isozyme expression. Various cytoskeletal, nuclear and mitochondrial proteins were identified to be deiminated in GBM, including prohibitin (PHB), a key protein in mitochondrial integrity and also involved in chemo-resistance. Post-translational deimination of PHB, and PHB protein levels, were reduced after 1 h treatment with pan-PAD inhibitor Cl-amidine in GBM cells. Histone H3 deimination was also reduced following Cl-amidine treatment. Multifaceted roles for PADs on EV-mediated pathways, as well as deimination of mitochondrial, nuclear and invadopodia related proteins, highlight PADs as novel targets for modulating GBM tumour communication

    Dodatki do żywności a ogólnie pojęte bezpieczeństwo.

    Get PDF
    Referat został zamieszczony w publikacji : "VII Seminarium Studenckie. Bezpieczeństwo w inżynierii procesowej.", 2017 r.W artykule zostały opisane dodatki do żywności oraz ich podział ze względu na zastosowanie technologiczne. Ponadto, zostaną omówione aspekty związane z niebezpieczeństwem stosowania wybranych dodatków do żywności. Do niebezpieczeństw tych zaliczono niebezpieczeństwo wynikające z samego procesu produkcji, takie jak przedawkowanie, niekontrolowany wyciek, zapylenie itp. Zostały omówione także wybrane zagadnienia z wpływu dodatków do żywności na zdrowie człowieka, w przypadku przedawkowania lub ich niedoboru. Na koniec tego artykułu omówiono metody zapobiegania nieumiejętnemu korzystaniu z dodatków do żywności oraz wyciągnięto wnioski
    corecore