179 research outputs found

    The Running Coupling from SU(3) Gauge Theory

    Full text link
    We present high precision results on the static quark-antiquark-potential on 32^4 and smaller lattices, using the standard Wilson action at BETA = 6.0, 6.2, 6.4, and 6.8 on the Connection Machine CM-2. Within our statistical errors (1%) we did not observe any finite size effects affecting the potential values, on varying the spatial lattice extent from 0.9 fm up to 3.3 fm. We find violations of asymptotic scaling in the bare coupling up to BETA = 6.8. We demonstrate that scaling violations on the string tension can be considerably reduced by introducing effective coupling schemes, which allow for a safer extrapolation of LAMBDA_Lattice to its continuum value. We are also able to see and to quantify the running of the coupling from the interquark force. From this we extract the ratio \sqrt{SIGMA}/LAMBDA_L. Both methods yield consistent values for the LAMBDA-parameter: LAMBDA_MSbar = 0.558(-0.007+0.017)\sqrt{SIGMA} = 246(-3+7) MeV.Comment: (Talk G. Bali at Lattice 92, Amsterdam), 4 Pages, 4 Postscript figures, LaTeX with espcrc2, and epsf style file

    Er-doped Tellurite glasses for planar waveguide power amplifier with extended gain bandwidth

    No full text
    Tellurite glass compositions doped with erbium and erbium/ytterbium optimised to support extended gain bandwidth with significant amplification have been fabricated, and their thermal, optical absorption, excitation and luminescence properties investigated. Each rare-earth dopant concentration was set at 1x1020/cm3. Broad emission cross-section bandwidths up to 50nm FWHM were observed, with fluorescence lifetimes of ~3ms. Collinear pump probe measurements on ~4mm thick bulk samples revealed peak gains of up to 2.1dB/cm at a wavelength of 1535nm in the co-doped material, with an incident pump intensity of only Iinc~8kW/cm2 at a wavelength of 974nm. At equivalent absorbed pump powers between co-doped and single doped materials the relative gain was 1.25dB/cm (Iinc~4kW/cm2) and 0.9dB/cm (Iinc~8kW/cm2) respectively, demonstrating efficient energy transfer from the ytterbium to erbium ions. Excited state absorption at longer wavelengths was observed and characterised and its implication on realising sufficient gain in the wavelength band of interest is discussed

    The Leptonic Decay Constants of Qˉq\bar{Q}q Mesons and the Lattice Resolution

    Full text link
    We present a high statistics study of the leptonic decay constant fPf_P of heavy pseudoscalar mesons using propagating heavy Wilson quarks within the quenched approximation, on lattices covering sizes from about 0.7~fm to 2~fm. Varying ÎČ\beta between 5.74 and 6.26 we observe a sizeable aa dependence of fPf_P when one uses the quark field normalization that was suggested by Kronfeld and Mackenzie, compared with the weaker dependence observed for the standard relativistic norm. The two schemes come into agreement when one extrapolates to a→0a \rightarrow 0. The extrapolations needed to reach the continuum quantity fBf_B introduce large errors and lead to the value fB=0.18(5)f_B=0.18(5)~GeV in the quenched approximation. This suggests that much more effort will be needed to obtain an accurate lattice prediction for fBf_B.Comment: 11 pages Latex + 5 tables + 8 postscript figures, unix shell archive, DESY preprint DESY 93-17

    Non-Universal Power Law of the "Hall Scattering Rate" in a Single-Layer Cuprate Bi_{2}Sr_{2-x}La_{x}CuO_{6}

    Full text link
    In-plane resistivity \rho_{ab}, Hall coefficient, and magnetoresistance (MR) are measured in a series of high-quality Bi_{2}Sr_{2-x}La_{x}CuO_{6} crystals with various carrier concentrations, from underdope to overdope. Our crystals show the highest T_c (33 K) and the smallest residual resistivity ever reported for Bi-2201 at optimum doping. It is found that the temperature dependence of the Hall angle obeys a power law T^n with n systematically decreasing with increasing doping, which questions the universality of the Fermi-liquid-like T^2 dependence of the "Hall scattering rate". In particular, the Hall angle of the optimally-doped sample changes as T^{1.7}, not as T^2, while \rho_{ab} shows a good T-linear behavior. The systematics of the MR indicates an increasing role of spin scattering in underdoped samples.Comment: 4 pages, 5 figure

    Towards Unification for Pointing Task Evaluation in 3D Desktop Virtual Environment

    Get PDF
    International audienceNew visualization systems for large and complex datasets are emerging and 3D Virtual Environments turn out to be a relevant solution. Interaction tasks in these 3D VE have been defined, especially to support evaluation of these applications. Nevertheless there is a lack of unified protocol to assess these elementary tasks in this context. Moreover it can be complex to determine the appropriate technique to perform these tasks as there is a lack of reference data. A standard is available for 2D pointing task, but there is no equivalence in 3D. In this paper, we propose an adaptation of this standard to a pointing task in a 3D VE. We detail our protocol and an instrumentation, which aims at assessing performance, comfort of techniques and satisfaction of users. We also present results of a user experimentation conducted according to this standard’s adaptation

    Results of the First Coincident Observations by Two Laser-Interferometric Gravitational Wave Detectors

    Get PDF
    We report an upper bound on the strain amplitude of gravitational wave bursts in a waveband from around 800Hz to 1.25kHz. In an effective coincident observing period of 62 hours, the prototype laser interferometric gravitational wave detectors of the University of Glasgow and Max Planck Institute for Quantum Optics, have set a limit of 4.9E-16, averaging over wave polarizations and incident directions. This is roughly a factor of 2 worse than the theoretical best limit that the detectors could have set, the excess being due to unmodelled non-Gaussian noise. The experiment has demonstrated the viability of the kind of observations planned for the large-scale interferometers that should be on-line in a few years time.Comment: 11 pages, 2 postscript figure

    From Atiyah Classes to Homotopy Leibniz Algebras

    Full text link
    A celebrated theorem of Kapranov states that the Atiyah class of the tangent bundle of a complex manifold XX makes TX[−1]T_X[-1] into a Lie algebra object in D+(X)D^+(X), the bounded below derived category of coherent sheaves on XX. Furthermore Kapranov proved that, for a K\"ahler manifold XX, the Dolbeault resolution Ω∙−1(TX1,0)\Omega^{\bullet-1}(T_X^{1,0}) of TX[−1]T_X[-1] is an L∞L_\infty algebra. In this paper, we prove that Kapranov's theorem holds in much wider generality for vector bundles over Lie pairs. Given a Lie pair (L,A)(L,A), i.e. a Lie algebroid LL together with a Lie subalgebroid AA, we define the Atiyah class αE\alpha_E of an AA-module EE (relative to LL) as the obstruction to the existence of an AA-compatible LL-connection on EE. We prove that the Atiyah classes αL/A\alpha_{L/A} and αE\alpha_E respectively make L/A[−1]L/A[-1] and E[−1]E[-1] into a Lie algebra and a Lie algebra module in the bounded below derived category D+(A)D^+(\mathcal{A}), where A\mathcal{A} is the abelian category of left U(A)\mathcal{U}(A)-modules and U(A)\mathcal{U}(A) is the universal enveloping algebra of AA. Moreover, we produce a homotopy Leibniz algebra and a homotopy Leibniz module stemming from the Atiyah classes of L/AL/A and EE, and inducing the aforesaid Lie structures in D+(A)D^+(\mathcal{A}).Comment: 36 page

    From Tetraquark to Hexaquark: A Systematic Study of Heavy Exotics in the Large NcN_c Limit

    Get PDF
    A systematic study of multiquark exotics with one or Nc−1N_c-1 heavy quarks in the large NcN_c limit is presented. By binding a chiral soliton to a heavy meson, either a normal NcN_c-quark baryon or an exotic (Nc+2)(N_c+2)-quark baryon is obtained. By replacing the heavy quark with Nc−1N_c-1 heavy antiquarks, exotic (2Nc−2)(2N_c-2)-quark and 2Nc2N_c-quark mesons are obtained. When Nc=3N_c = 3, they are just the normal triquark baryon QqqQqq, the exotic pentaquark baryon QqˉqˉqˉqˉQ\bar q\bar q\bar q\bar q, tetraquark di-meson QˉQˉqq\bar Q \bar Q qq and the hexaquark di-baryon QˉQˉqˉqˉ barqqˉ\bar Q \bar Q \bar q \bar q\ bar q \bar q respectively. Their stabilities and decays are also discussed. In particular, it is shown that the ``heavy to heavy'' semileptonic decays are described by the Isgur--Wise form factors of the normal baryons.Comment: 14 pages in REVTeX, no Figure

    Low temperature electronic properties of Sr_2RuO_4 II: Superconductivity

    Full text link
    The body centered tetragonal structure of Sr_2RuO_4 gives rise to umklapp scattering enhanced inter-plane pair correlations in the d_{yz} and d_{zx} orbitals. Based on symmetry arguments, Hund's rule coupling, and a bosonized description of the in-plane electron correlations the superconducting order parameter is found to be a orbital-singlet spin-triplet with two spatial components. The spatial anisotropy is 7%. The different components of the order parameter give rise to two-dimensional gapless fluctuations. The phase transition is of third order. The temperature dependence of the pair density, specific heat, NQR, Knight shift, and susceptibility are in agreement with experimental results.Comment: 20 pages REVTEX, 3 figure
    • 

    corecore