9,287 research outputs found

    Phase transitions in a gas of anyons

    Full text link
    We continue our numerical Monte Carlo simulation of a gas of closed loops on a 3 dimensional lattice, however now in the presence of a topological term added to the action corresponding to the total linking number between the loops. We compute the linking number using certain notions from knot theory. Adding the topological term converts the particles into anyons. Using the correspondence that the model is an effective theory that describes the 2+1-dimensional Abelian Higgs model in the asymptotic strong coupling regime, the topological linking number simply corresponds to the addition to the action of the Chern-Simons term. We find the following new results. The system continues to exhibit a phase transition as a function of the anyon mass as it becomes small \cite{mnp}, although the phases do not change the manifestation of the symmetry. The Chern-Simons term has no effect on the Wilson loop, but it does affect the {\rm '}t Hooft loop. For a given configuration it adds the linking number of the 't Hooft loop with all of the dynamical vortex loops to the action. We find that both the Wilson loop and the 't Hooft loop exhibit a perimeter law even though there are no massless particles in the theory, which is unexpected.Comment: 6 pages, 5 figure

    Past and present of sediment and carbon biogeochemical cycling models

    Get PDF
    International audienceThe global carbon cycle is part of the much more extensive sedimentary cycle that involves large masses of carbon in the Earth's inner and outer spheres. Studies of the carbon cycle generally followed a progression in knowledge of the natural biological, then chemical, and finally geological processes involved, culminating in a more or less integrated picture of the biogeochemical carbon cycle by the 1920s. However, knowledge of the ocean's carbon cycle behavior has only within the last few decades progressed to a stage where meaningful discussion of carbon processes on an annual to millennial time scale can take place. In geologically older and pre-industrial time, the ocean was generally a net source of CO2 emissions to the atmosphere owing to the mineralization of land-derived organic matter in addition to that produced in situ and to the process of CaCO3 precipitation. Due to rising atmospheric CO2 concentrations because of fossil fuel combustion and land use changes, the direction of the air-sea CO2 flux has reversed, leading to the ocean as a whole being a net sink of anthropogenic CO2. The present thickness of the surface ocean layer, where part of the anthropogenic CO2 emissions are stored, is estimated as of the order of a few hundred meters. The oceanic coastal zone net air-sea CO2 exchange flux has also probably changed during industrial time. Model projections indicate that in pre-industrial times, the coastal zone may have been net heterotrophic, releasing CO2 to the atmosphere from the imbalance between gross photosynthesis and total respiration. This, coupled with extensive CaCO3 precipitation in coastal zone environments, led to a net flux of CO2 out of the system. During industrial time the coastal zone ocean has tended to reverse its trophic status toward a non-steady state situation of net autotrophy, resulting in net uptake of anthropogenic CO2 and storage of carbon in the coastal ocean, despite the significant calcification that still occurs in this region. Furthermore, evidence from the inorganic carbon cycle indicates that deposition and net storage of CaCO3 in sediments exceed inflow of inorganic carbon from land and produce CO2 emissions to the atmosphere. In the shallow-water coastal zone, increase in atmospheric CO2 during the last 300 years of industrial time may have reduced the rate of calcification, and continuation of this trend is an issue of serious environmental concern in the global carbon balance

    Jacobi structures revisited

    Full text link
    Jacobi algebroids, that is graded Lie brackets on the Grassmann algebra associated with a vector bundle which satisfy a property similar to that of the Jacobi brackets, are introduced. They turn out to be equivalent to generalized Lie algebroids in the sense of Iglesias and Marrero and can be viewed also as odd Jacobi brackets on the supermanifolds associated with the vector bundles. Jacobi bialgebroids are defined in the same manner. A lifting procedure of elements of this Grassmann algebra to multivector fields on the total space of the vector bundle which preserves the corresponding brackets is developed. This gives the possibility of associating canonically a Lie algebroid with any local Lie algebra in the sense of Kirillov.Comment: 20 page

    Cohomology of skew-holomorphic Lie algebroids

    Get PDF
    We introduce the notion of skew-holomorphic Lie algebroid on a complex manifold, and explore some cohomologies theories that one can associate to it. Examples are given in terms of holomorphic Poisson structures of various sorts.Comment: 16 pages. v2: Final version to be published in Theor. Math. Phys. (incorporates only very minor changes

    Cyclotron Resonance in the Layered Perovskite Superconductor Sr2RuO4

    Full text link
    We have measured the cyclotron masses in Sr2RuO4 through the observation of periodic-orbit-resonances - a magnetic resonance technique closely related to cyclotron resonance. We obtain values for the alpha, beta and gamma Fermi surfaces of (4.33+/-0.05)me, (5.81+/-0.03)me and (9.71+/-0.11)me respectively. The appreciable differences between these results and those obtained from de Haas- van Alphen measurements are attributable to strong electron-electron interactions in this system. Our findings appear to be consistent with predictions for a strongly interacting Fermi liquid; indeed, semi-quantitative agreement is obtained for the electron pockets beta and gamma.Comment: 4 pages + 3 figure

    How does iron interact with sporopollenin exine capsules? An X-ray absorption study including microfocus XANES and XRF imaging

    Get PDF
    Sporopollenin exine capsules (SECs) derived from plant spores and pollen grains have been proposed as adsorption, remediation and drug delivery agents. Despite many studies there is scant structural data available. This X-ray absorption investigation represents the first direct structural data on the interaction of metals with SECs and allows elucidation of their structure–property relationships. Fe K-edge XANES and EXAFS data have shown that the iron local environment in SECs (derived from Lycopodium clavatum) reacted with aqueous ferric chloride solutions is similar to that of ferrihydrite (FeOOH) and by implication ferritin. Fe Kα XRF micro-focus experiments show that there is a poor correlation between the iron distribution and the underlying SEC structure indicating that the SEC is coated in the FeOOH material. In contrast, the Fe Kα XRF micro-focus experiments on SECs reacted with aqueous ferrous chloride solutions show that there is a very high correlation between the iron distribution and the SEC structure, indicating a much more specific form of interaction of the iron with the SEC surface functional groups. Fe K-edge XANES and EXAFS data show that the FeII can be easily oxidised to give a structure similar to, but not identical to that in the FeIII case, and that even if anaerobic conditions are used there is still partial oxidation to FeIII

    Field theoretic description of the abelian and non-abelian Josephson effect

    Full text link
    We formulate the Josephson effect in a field theoretic language which affords a straightforward generalization to the non-abelian case. Our formalism interprets Josephson tunneling as the excitation of pseudo-Goldstone bosons. We demonstrate the formalism through the consideration of a single junction separating two regions with a purely non-abelian order parameter and a sandwich of three regions where the central region is in a distinct phase. Applications to various non-abelian symmetry breaking systems in particle and condensed matter physics are given.Comment: 10 pages no figure

    Meson Decay Constants from the Valence Approximation to Lattice QCD

    Full text link
    We evaluate fπ/mρf_{\pi}/ m_{\rho}, fK/mρf_K/ m_{\rho}, 1/fρ1/f_{\rho}, and mϕ/(fϕmρ) m_{\phi}/(f_{\phi} m_{\rho}), extrapolated to physical quark mass, zero lattice spacing and infinite volume, for lattice QCD with Wilson quarks in the valence (quenched) approximation. The predicted ratios differ from experiment by amounts ranging from 12\% to 17\% equivalent to between 0.9 and 2.8 times the corresponding statistical uncertainties.Comment: uufiles encoded copy of 40 page Latex article, including 14 figures in Postscript. The long version of hep-lat/9302012, IBM/HET 93-
    corecore