71 research outputs found

    Theileria annulata-transformed cell lines are efficient antigen-presenting cells for in vitro analysis of CD8 T cell responses to bovine herpesvirus-1

    Get PDF
    Continuously growing cell lines infected with the protozoan parasite Theileria annulata can readily be established by in vitro infection of leukocytes with the sporozoite stage of the parasite. The aim of the current study was to determine whether such transformed cell lines could be used as antigen presenting cells to analyse the antigenic specificity of bovine CD8 T cell responses to viral infections. Bovine herpes virus 1 (BHV-1), which is known to induce CD8 T cell responses, was used as a model. T. annulata- transformed cells were shown to express high levels of CD40 and CD80 and were susceptible to infection with BHV-1, vaccinia and canarypox viruses. The capacity of the cells to generate antigen-specific CD8 T cell lines was initially validated using a recombinant canarypox virus expressing a defined immunodominant T. parva antigen (Tp1). Autologous T. annulata-transformed cells infected with BHV-1 were then used successfully to generate specific CD8 T cell lines and clones from memory T cell populations of BHV-1-immune animals. These lines were BHV-1-specific and class I MHC-restricted. In contrast to previous studies, which reported recognition of the glycoproteins gB and gD, the CD8 T cell lines generated in this study did not recognise these glycoproteins. Given the ease with which T. annulata-transformed cell lines can be established and maintained in vitro and their susceptibility to infection with poxvirus vectors, these cell lines offer a convenient and efficient in vitro system to analyse the fine specificity of virus-specific CD8 T cell responses in cattle

    Limited genetic and antigenic diversity within parasite isolates used in a live vaccine against Theileria parva

    Get PDF
    An infection and treatment protocol is used to vaccinate cattle against Theileria parva infection. Due to incomplete cross-protection between different parasite isolates, a mixture of three isolates, termed the Muguga cocktail, is used for vaccination. While vaccination of cattle in some regions provides high levels of protection, some animals are not protected against challenge with buffalo-derived T. parva. Knowledge of the genetic composition of the Muguga cocktail vaccine is required to understand how vaccination is able to protect against field challenge and to identify the potential limitations of the vaccine. The aim of the current study was to determine the extent of genetic and antigenic diversity within the parasite isolates that constitute the Muguga cocktail. High throughput multi-locus sequencing of antigen-encoding loci was performed in parallel with typing using a panel of micro- and minisatellite loci. The former focused on genes encoding CD8+ T cell antigens, believed to be relevant to protective immunity. The results demonstrate that each of the three component stocks of the cocktail contains limited parasite genotypic diversity, with single alleles detected at many gene/satellite loci and, moreover, that two of the components show a very high level of similarity. Thus, the vaccine incorporates very little of the genetic and antigenic diversity observed in field populations of T. parva. The presence of alleles at low frequency (<10%) within vaccine component populations also points to the possibility of variability in the content of vaccine doses and the potential for loss of allelic diversity during tick passage. The results demonstrate that there is scope to modify the content of the vaccine in order to enhance its diversity and thus its potential for providing broad protection. The ability to accurately quantify genetic diversity in vaccine component stocks will facilitate improved quality control procedures designed to ensure the long-term efficacy of the vaccine

    MHC Class I Bound to an Immunodominant Theileria parva Epitope Demonstrates Unconventional Presentation to T Cell Receptors

    Get PDF
    T cell receptor (TCR) recognition of peptide-MHC class I (pMHC) complexes is a crucial event in the adaptive immune response to pathogens. Peptide epitopes often display a strong dominance hierarchy, resulting in focusing of the response on a limited number of the most dominant epitopes. Such T cell responses may be additionally restricted by particular MHC alleles in preference to others. We have studied this poorly understood phenomenon using Theileria parva, a protozoan parasite that causes an often fatal lymphoproliferative disease in cattle. Despite its antigenic complexity, CD8+ T cell responses induced by infection with the parasite show profound immunodominance, as exemplified by the Tp1214–224 epitope presented by the common and functionally important MHC class I allele N*01301. We present a high-resolution crystal structure of this pMHC complex, demonstrating that the peptide is presented in a distinctive raised conformation. Functional studies using CD8+ T cell clones show that this impacts significantly on TCR recognition. The unconventional structure is generated by a hydrophobic ridge within the MHC peptide binding groove, found in a set of cattle MHC alleles. Extremely rare in all other species, this feature is seen in a small group of mouse MHC class I molecules. The data generated in this analysis contribute to our understanding of the structural basis for T cell-dependent immune responses, providing insight into what determines a highly immunogenic p-MHC complex, and hence can be of value in prediction of antigenic epitopes and vaccine design

    Haematopoietic depletion in vaccine-induced neonatal pancytopenia depends on both the titre and specificity of alloantibody and levels of MHC I expression

    Get PDF
    AbstractBovine Neonatal Pancytopenia (BNP) is a disease of calves characterised by haematopoietic depletion, mediated by ingestion of alloantibodies in colostrum. It has been linked epidemiologically to vaccination of the dams of affected calves with a particular vaccine (Pregsure) containing a novel adjuvant. Evidence suggests that BNP-alloantibodies are directed against MHC I molecules, induced by contaminant bovine cellular material from Madin-Darby Bovine Kidney (MDBK) cells used in the vaccine's production. We aimed to investigate the specificity of BNP-alloantibody for bovine MHC I alleles, particularly those expressed by MDBK cells, and whether depletion of particular cell types is due to differential MHC I expression levels.A complement-mediated cytotoxicity assay was used to assess functional serum alloantibody titres in BNP-dams, Pregsure-vaccinated dams with healthy calves, cows vaccinated with an alternative product and unvaccinated controls. Alloantibody specificity was investigated using transfected mouse lines expressing the individual MHC I alleles identified from MDBK cells and MHC I-defined bovine leukocyte lines. All BNP-dams and 50% of Pregsure-vaccinated cows were shown to have MDBK-MHC I specific alloantibodies, which cross-reacted to varying degrees with other MHC I genotypes. MHC I expression levels on different blood cell types, assessed by flow cytometry, were found to correlate with levels of alloantibody-mediated damage in vitro and in vivo. Alloantibody-killed bone marrow cells were shown to express higher levels of MHC I than undamaged cells.The results provide evidence that MHC I-specific alloantibodies play a dominant role in the pathogenesis of BNP. Haematopoietic depletion was shown to be dependent on the titre and specificity of alloantibody produced by individual cows and the density of surface MHC I expression by different cell types. Collectively, the results support the hypothesis that MHC I molecules originating from MDBK cells used in vaccine production, coupled with a powerful adjuvant, are responsible for the generation of pathogenic alloantibodies

    Bovine CD8 (BoCD8)

    No full text

    Bovine CD1 (BoCD1)

    No full text
    corecore