9,863 research outputs found

    Flavor Gauge Models Below the Fermi Scale

    Full text link
    The mass and weak interaction eigenstates for the quarks of the third generation are very well aligned, an empirical fact for which the Standard Model offers no explanation. We explore the possibility that this alignment is due to an additional gauge symmetry in the third generation. Specifically, we construct and analyze an explicit, renormalizable model with a gauge boson, XX, corresponding to the B−LB-L symmetry of the third family. Having a relatively light (in the MeV to multi-GeV range), flavor-nonuniversal gauge boson results in a variety of constraints from different sources. By systematically analyzing 20 different constraints, we identify the most sensitive probes: kaon, B+B^+, D+D^+ and Upsilon decays, D−Dˉ0D-\bar{D}^0 mixing, atomic parity violation, and neutrino scattering and oscillations. For the new gauge coupling gXg_X in the range (10−2−10−4)(10^{-2} - 10^{-4}) the model is shown to be consistent with the data. Possible ways of testing the model in bb physics, top and ZZ decays, direct collider production and neutrino oscillation experiments, where one can observe nonstandard matter effects, are outlined. The choice of leptons to carry the new force is ambiguous, resulting in additional phenomenological implications, such as non-universality in semileptonic bottom decays. The proposed framework provides interesting connections between neutrino oscillations, flavor and collider physics.Comment: 44 pages, 7 figures, 3 tables; B physics constraints and references added, conclusions unchange

    Fractional Hamiltonian analysis of higher order derivatives systems

    Full text link
    The fractional Hamiltonian analysis of 1+1 dimensional field theory is investigated and the fractional Ostrogradski's formulation is obtained. The fractional path integral of both simple harmonic oscillator with an acceleration-squares part and a damped oscillator are analyzed. The classical results are obtained when fractional derivatives are replaced with the integer order derivatives.Comment: 13 page

    Estudo bibliométrico da produção científica em pinhão-manso, no Web of Science, no período de 1945 a 2011.

    Get PDF
    bitstream/item/54652/1/CITE-08.pd

    Actin assembly ruptures the nuclear envelope by prying the lamina away from nuclear pores and nuclear membranes in starfish oocytes.

    No full text
    The nucleus of oocytes (germinal vesicle) is unusually large and its nuclear envelope (NE) is densely packed with nuclear pore complexes (NPCs) stockpiled for embryonic development. We showed that breakdown of this specialized NE is mediated by an Arp2/3-nucleated F-actin 'shell' in starfish oocytes, in contrast to microtubule-driven tearing in mammalian fibroblasts. Here, we address the mechanism of F-actin-driven NE rupture by correlated live-cell, super-resolution and electron microscopy. We show that actin is nucleated within the lamina sprouting filopodia-like spikes towards the nuclear membranes. These F-actin spikes protrude pore-free nuclear membranes, whereas the adjoining membrane stretches accumulate NPCs associated with the still-intact lamina. Packed NPCs sort into a distinct membrane network, while breaks appear in ER-like, pore-free regions. Thereby, we reveal a new function for actin-mediated membrane shaping in nuclear rupture that is likely to have implications in other contexts such as nuclear rupture observed in cancer cells

    Type O pure radiation metrics with a cosmological constant

    Get PDF
    In this paper we complete the integration of the conformally flat pure radiation spacetimes with a non-zero cosmological constant Λ\Lambda, and τ≠0\tau \ne 0, by considering the case Λ+ττˉ≠0\Lambda +\tau\bar\tau \ne 0. This is a further demonstration of the power and suitability of the generalised invariant formalism (GIF) for spacetimes where only one null direction is picked out by the Riemann tensor. For these spacetimes, the GIF picks out a second null direction, (from the second derivative of the Riemann tensor) and once this spinor has been identified the calculations are transferred to the simpler GHP formalism, where the tetrad and metric are determined. The whole class of conformally flat pure radiation spacetimes with a non-zero cosmological constant (those found in this paper, together with those found earlier for the case Λ+ττˉ=0\Lambda +\tau\bar\tau = 0) have a rich variety of subclasses with zero, one, two, three, four or five Killing vectors

    Three-dimensional aspects of fluid flows in channels. II. Effects of Meniscus and Thin Film regimes on Viscous Fingers

    Get PDF
    We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional Lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Secondly, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.Comment: 9 pages, 10 figure
    • …
    corecore