1,820 research outputs found

    The development of a classification system for inland aquatic ecosystems in South Africa

    Get PDF
    A classification system is described that was developed for inland aquatic ecosystems in South Africa, including wetlands. The six-tiered classification system is based on a top-down, hierarchical  classification of aquatic ecosystems, following the functionally-oriented hydrogeomorphic (HGM)  approach to classification but incorporating structural attributes at the lower levels of the hierarchy. At Level 1, a distinction is made between inland, estuarine and shallow marine systems using the degree of connectivity to the open ocean as the key discriminator. Inland systems are characterised by the  complete absence of marine exchange and/or tidal influence. At Level 2, inland systems are grouped according to the most appropriate spatial framework for the particular application. At Level 3, four  primary Landscape Units are distinguished (Valley floor, Slope, Plain, Bench) on the basis of the  topographic position within which a particular inland aquatic ecosystem is situated, in recognition of the influence that the landscape setting has over hydrological and hydrodynamic processes acting within an aquatic ecosystem. Level 4 identifies HGM Units, defined primarily according to landform, hydrological characteristics and hydrodynamics. The following primary HGM Units (or HGM Types), which represent the main units of analysis for the classification system, are distinguished at Level 4A: (1) River; (2) Floodplain Wetland; (3) Channelled Valley-Bottom Wetland; (4) Unchannelled Valley-Bottom Wetland; (5) Depression; (6) Seep; (7) Wetland Flat. Secondary discriminators are applied at Level 5 to classify the hydrological regime of an HGM Unit, and Descriptors at Level 6 to categorise a range of biophysical attributes. The HGM Unit at Level 4 and the Hydrological Regime at Level 5 together constitute a Functional Unit, which represents the focal point of the classification system. The utility of the  classification system is ultimately dependent on the level to which ecosystem units are classified, which is in turn constrained by the type and extent of information available.Keywords: freshwater ecosystems, hydrogeomorphic (HGM) units, inland water ecosystems,  wetlands, wetland classification syste

    California Current seascape influences juvenile salmon foraging ecology at multiple scales

    Get PDF
    Juvenile salmon Oncorhynchus spp. experience variable mortality rates during their first few months in the ocean, and high growth during this period is critical to minimize size selective predation. Examining links between the physical environment and foraging ecology is important to understand mechanisms that drive growth. These mechanisms are complex and include interactions among the physical environment, forage availability, bioenergetics, and salmon foraging behavior. Our objectives were to explore how seascape features (biological and physical) influence juvenile Chinook salmon O. tshawytscha foraging at annual and feedingevent scales in the California Current Ecosystem. We demonstrate that forage abundance was the most influential determinant of mean salmon stomach fullness at the annual scale, while at the feeding-event scale, fullness increased with greater cumulative upwelling during the 10 d prior and at closer distances to thermal fronts. Upwelling promotes nutrient enrichment and productivity, while fronts concentrate organisms, likely resulting in available prey to salmon and increased stomach fullness. Salmon were also more likely to consume krill when there was high prior upwelling,andswitchedtonon-krillinvertebrates(i.e.amphipods,decapods,copepods)inweaker upwelling conditions. As salmon size increased from 72−250 mm, salmon were more likely to consume fish, equal amounts of krill, and fewer non-krill invertebrates. Broad seascape processes determined overall prey availability and fullness in a given year, while fine- and meso-scale processes influenced local accessibility of prey to individual salmon. Therefore, processes occurring at multiple scales will influence how marine organisms respond to changing environment

    Noonan syndrome and related disorders: Alterations in growth and puberty

    Get PDF
    Noonan syndrome is a relatively common multiple malformation syndrome with characteristic facies, short stature and congenital heart disease, most commonly pulmonary stenosis (Noonan, Clin Pediatr, 33:548–555, 1994). Recently, a mutation in the PTPN11 gene (Tartaglia, Mehler, Goldberg, Zampino, Brunner, Kremer et al., Nat Genet, 29:465–468, 2001) was found to be present in about 50% of individuals with Noonan syndrome. The phenotype noted in Noonan syndrome is also found in a number of other syndromes which include LEOPARD (Gorlin, Anderson, Blaw, Am J Dis Child, 17:652–662, 1969), Cardio-facio-cutaneous syndrome (Reynolds, Neri, Hermann, Blumberg, Coldwell, Miles et al., Am J Med Genet, 28:413–427, 1986) and Costello syndrome (Hennekam, Am J Med Genet, 117C(1):42–48, 2003). All three of these syndromes share similar cardiac defects and all have postnatal short stature. Very recently, HRAS mutations (Aoki, Niihori, Kawame, Kurosawa, Ohashi, Tanaka et al., Nat Genet, 37:1038–1040, 2005) have been found in the Costello syndrome and germline mutations in KRAS and BRAF genes (Rodriguez-Viciana, Tetsu, Tidyman, Estep, Conger, Santa Cruz et al., Nat Genet,2006; Niihori, Aoki, Narumi, Neri, Cave, Verloes et al., Nat Genet, 38:294–296, 2006) in the Cardio-facio-cutaneous syndrome. Phenotypic overlap between these genetic disorders can now be explained since each is caused by germline mutations that are major components of the RAS-MAPK pathway. This pathway plays an important role in growth factor and cytokine signaling as well as cancer pathogenesis

    Self-Assembling Peptide Nanofiber Scaffolds Accelerate Wound Healing

    Get PDF
    Cutaneous wound repair regenerates skin integrity, but a chronic failure to heal results in compromised tissue function and increased morbidity. To address this, we have used an integrated approach, using nanobiotechnology to augment the rate of wound reepithelialization by combining self-assembling peptide (SAP) nanofiber scaffold and Epidermal Growth Factor (EGF). This SAP bioscaffold was tested in a bioengineered Human Skin Equivalent (HSE) tissue model that enabled wound reepithelialization to be monitored in a tissue that recapitulates molecular and cellular mechanisms of repair known to occur in human skin. We found that SAP underwent molecular self-assembly to form unique 3D structures that stably covered the surface of the wound, suggesting that this scaffold may serve as a viable wound dressing. We measured the rates of release of EGF from the SAP scaffold and determined that EGF was only released when the scaffold was in direct contact with the HSE. By measuring the length of the epithelial tongue during wound reepithelialization, we found that SAP scaffolds containing EGF accelerated the rate of wound coverage by 5 fold when compared to controls without scaffolds and by 3.5 fold when compared to the scaffold without EGF. In conclusion, our experiments demonstrated that biomaterials composed of a biofunctionalized peptidic scaffold have many properties that are well-suited for the treatment of cutaneous wounds including wound coverage, functionalization with bioactive molecules, localized growth factor release and activation of wound repair

    On supersymmetric quantum mechanics

    Full text link
    This paper constitutes a review on N=2 fractional supersymmetric Quantum Mechanics of order k. The presentation is based on the introduction of a generalized Weyl-Heisenberg algebra W_k. It is shown how a general Hamiltonian can be associated with the algebra W_k. This general Hamiltonian covers various supersymmetrical versions of dynamical systems (Morse system, Poschl-Teller system, fractional supersymmetric oscillator of order k, etc.). The case of ordinary supersymmetric Quantum Mechanics corresponds to k=2. A connection between fractional supersymmetric Quantum Mechanics and ordinary supersymmetric Quantum Mechanics is briefly described. A realization of the algebra W_k, of the N=2 supercharges and of the corresponding Hamiltonian is given in terms of deformed-bosons and k-fermions as well as in terms of differential operators.Comment: Review paper (31 pages) to be published in: Fundamental World of Quantum Chemistry, A Tribute to the Memory of Per-Olov Lowdin, Volume 3, E. Brandas and E.S. Kryachko (Eds.), Springer-Verlag, Berlin, 200
    corecore