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R. Álvarez-Nodarse†‡ and R. S. Costas-Santos†

† Departamento de Análisis Matemático.
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Abstract

We study the factorization of the hypergeometric-type difference equation of
Nikiforov and Uvarov on nonuniform lattices. An explicit form of the raising and
lowering operators is derived and some relevant examples are given.

1 Introduction

In this paper we will deal with the so-called factorization method (FM) of the hyper-
geometric-type difference equations on nonuniform lattices. The FM was already
used by Darboux [14] and Schrödinger [27, 28] to obtain the solutions of differential
equations, and also by Infeld and Hull [17] for finding analytical solutions of certain
classes of second order differential equations. Later on, Miller extended it to difference
equations [18] and q-differences –in the Hahn sense– [19]. For more recent works see
e.g. [5, 6, 11, 29, 30] and references therein.
The classical FM was based on the existence of a so-called raising and lowering opera-
tors for the corresponding equation that allows to find the explicit solutions in a very
easy way. Going further, Atakishiyev and coauthors [5, 9, 6] have found the dynamical
symmetry algebra related with the FM and the differential or difference equations. Of
special interest was the paper by Smirnov [15] in which the equivalence of the FM and
the Nikiforov et all theory [25] was shown, furthermore this paper pointed out that
the aforementioned equivalence remains valid also for the nonuniform lattices that was
shown later on in [20, 29]. In particular, in [29] a detailed study of the FM and its
equivalence with the Nikiforov et al. approach to difference equations [25] have been
established. Also, in [12], a special nonuniform lattice was considered. In fact, in
[12] the author constructed the FM for the Askey–Wilson polynomials using basically
the difference equation for the polynomials. In the present paper we will continue the
research of the nonuniform lattice case. In fact, following the idea by Bangerezako
[12] for the Askey–Wilson polynomials and Lorente [22] for the classical continuous
and discrete cases, we will obtain the FM for the general polynomial solutions of the
hypergeometric difference equation on the general quadratic nonuniform lattice x(s) =
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c1q
s + c2q

−s + c3. We will use, as it is already suggested in [9, 15], not the polynomial
solutions but the corresponding normalized functions which is more natural and useful.
In such a way, the method proposed here is the generalization of [12] and [22] to the
aforementioned nonuniform lattice.
The structure of the paper is as follows. In Section 2 we present some well-known
results on orthogonal polynomials on nonuniform lattices [10, 25, 26], in section 3 we
introduce the normalized functions and obtain some of their properties such as the
lowering and raising operator that allow us, in Section 4, to obtain the factorization
for the second order difference equation satisfied by such functions. Finally, in Section
5, some relevant examples are worked out.

2 Some basic properties of the q-polynomials

Here, we will summarize some of the properties of the q-polynomials useful for the rest
of the work. For further information see e.g. [25].

We will deal here with the second order difference equation of the hypergeometric type

σ(s)
∆

∆x(s − 1
2)

[
∇y(s)

∇x(s)

]
+ τ(s)

∆y(s)

∆x(s)
+ λy(s) = 0,

σ(s) = σ̃(x(s))− 1
2 τ̃(x(s))∆x(s − 1

2), τ(s) = τ̃(x(s)),

(1)

where ∇f(s) = f(s)− f(s− 1) and ∆f(s) = f(s+ 1)− f(s) denote the backward and
forward finite difference derivatives, respectively, σ̃(x(s)) and τ̃(x(s)) are polynomials
in x(s) of degree at most 2 and 1, respectively, and λ is a constant. In the following,
we will use the following notation for the coefficients in the power expansions in x(s)
of σ̃(s) and τ̃(s)

σ̃(s) ≡ σ̃[x(s)] =
σ̃′′

2
x2(s) + σ̃′(0)x(s) + σ̃(0), τ̃(s) ≡ τ̃ [x(s)] = τ̃ ′x(s) + τ̃(0). (2)

An important property of the above equation is that the k-order difference derivative
of a solution y(s) of (1), defined by

yk(s)q =
∆

∆xk−1(s)

∆

∆xk−2(s)
. . .

∆

∆x(s)
y(s) ≡ ∆(k)y(s),

also satisfies a difference equation of the hypergeometric type

σ(s)
∆

∆xk(s−
1
2)

[
∇yk(s)q
∇xk(s)

]
+ τk(s)

∆yk(s)q
∆xk(s)

+ µkyk(s)q = 0, (3)

where xk(s) = x(s+ k

2
) and [25, page 62, Eq. (3.1.29)]

τk(s) =
σ(s + k)− σ(s) + τ(s+ k)∆x(s+ k − 1

2)

∆xk−1(s)
, µk = λ+

k−1∑

m=0

∆τm(s)

∆xm(s)
. (4)

It is important to notice that the above difference equations have polynomial solutions
of the hypergeometric type iff x(s) is a function of the form [10, 26]

x(s) = c1(q)q
s + c2(q)q

−s + c3(q) = c1(q)[q
s + q−s−µ] + c3(q), (5)
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where c1, c2, c3 and qµ = c1
c2

are constants which, in general, depend on q [25, 26]. For
the above lattice, a straightforward calculation shows that τk(s) is a polynomial of first
degree in xk(s) of the form (see e.g. [10])

τk(s) = τ̃ ′kxk(s) + τ̃k(0), τ̃ ′k = [2k]q
σ̃′′

2
+ αq(2k)τ̃

′,

τ̃k(0) =
c3σ̃

′′

2
(2[k]q − [2k]q) + σ̃′(0)[k]q + c3τ

′(αq(k)− αq(2k)) + τ̃(0)αq(k),

(6)

where the q-numbers [k]q and αq(k) are defined by

[k]q =
q

k

2 − q−
k

2

q
1

2 − q−
1

2

, αq(k) =
q

k

2 + q−
k

2

2
, (7)

and [n]q! are the q-factorials [n]q! = [1]q[2]q · · · [n]q.
Both difference equations (1) and (3) can be rewritten in the symmetric form

∆

∆x(s− 1
2)

[
σ(s)ρ(s)

∇y(s)

∇x(s)

]
+ λnρ(s)y(s) = 0,

and
∆

∆xk(s−
1
2)

[
σ(s)ρk(s)

∇yk(s)

∇xk(s)

]
+ µkρk(s)yk(s) = 0,

where ρ(s) and ρk(s) are the weight functions satisfying the Pearson-type difference
equations

△

∆x(s− 1
2)

[σ(s)ρ(s)] = τ(s)ρ(s) ,
△

∆xk(s−
1
2)

[σ(s)ρk(s)] = τk(s)ρk(s), (8)

respectively. In [25] it is shown that the polynomial solutions of (3) (and so the poly-
nomial solutions of (1)) are determined by the q-analogue of the Rodrigues formula on
the nonuniform lattices

∆

∆xk−1(s)
· · ·

∆

∆x(s)
Pn(x(s))q ≡ ∆(k)Pn(x(s))q =

An,kBn

ρk(s)
∇

(n)
k ρn(s), (9)

where

∇
(n)
k f(s) =

∇

∇xk+1(s)

∇

∇xk+2(s)
· · ·

∇

∇xn(s)
f(s).

An,k =
[n]q!

[n− k]q!

k−1∏

m=0

{
αq(n+m− 1)τ̃ ′ + [n+m− 1]q

σ̃′′

2

}
(10)

Thus [25, page 66, Eq. (3.2.19)]

Pn(x(s))q =
Bn

ρ(s)
∇(n)ρn(s), ∇(n) ≡

∇

∇x1(s)

∇

∇x2(s)
· · ·

∇

∇xn(s)
, (11)

where ρn(s) = ρ(s + n)

n∏

k=1

σ(s + k) and

λn = −[n]q

{
αq(n− 1)τ̃ ′ + [n− 1]q

σ̃′′

2

}
. (12)
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In this paper we will deal with orthogonal q-polynomials and functions. It can be
proven [25], by using the difference equation of hypergeometric-type (1), that if the
boundary condition

σ(s)ρ(s)xk(s−
1

2
)
∣∣∣
s=a,b

= 0, ∀k ≥ 0, (13)

holds, then the polynomials Pn(s)q are orthogonal, i.e.,

b−1∑

s=a

Pn(x(s))qPm(x(s))qρ(s)∆x(s −
1

2
) = δnmd2n, s = a, a+ 1, . . . , b− 1, (14)

where ρ(s) is a solution of the Pearson-type equation (8). In the special case of the
linear exponential lattice x(s) = qs the above relation can be written in terms of the
Jackson q-integral (see e.g. [16, 21])

∫ z2
z1

f(t)dqt, defined by

∫ z2

z1

f(t)dqt =

∫ z2

0
f(t)dqt−

∫ z1

0
f(t)dqt,

where ∫ z

0
f(t)dqt = z(1− q)

∞∑

k=0

f(zqk)qk, 0 < q < 1,

as follows:

∫ qb

qa
Pn(t)qPm(t)qω(t)dqt = δnmq1/2d2n, t = qs, ω(t) ≡ ω(qt) = ρ(t). (15)

Notice that the above boundary condition (13) is valid for k = 0. Moreover, if we
assume that a is finite, then (13) is fulfilled at s = a providing that σ(a) = 0 [25, §3.3,
page 70]. In the following we will assume that this condition holds. The squared norm
in (14) is given by [25, Chapter 3, Section 3.7.2, pag. 104]

d2n = (−1)nAn,nB
2
n

b−n−1∑

s=a

ρn(s)∆xn(s−
1

2
).

There is also a so-called continuous orthogonality. In fact, if there exist a contour Γ
such that ∫

Γ
∆[ρ(z)σ(z)xk(z −

1

2
)] dz = 0, ∀k ≥ 0, (16)

then [25] ∫

Γ
Pn(x(z))qPm(x(z))qρ(z)∆x(z −

1

2
) dz = 0, n 6= m.

A simple consequence of the orthogonality is the following three term recurrence rela-
tion:

x(s)Pn(x(s))q = αnPn+1(x(s))q + βnPn(x(s))q + γnPn−1(x(s))q, (17)

where αn, βn and γn are constants. If Pn(s)q = anx
n(s)+ bnx

n−1(s)+ · · · , then using
(17) we find

αn =
an
an+1

, βn =
bn
an

−
bn+1

an+1
, γn =

an−1

an

d2n
d2n−1

. (18)

To obtain the explicit values of αn, βn we will use the following lemma, –interesting in
its own right– that can be proven by induction:
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Lemma 2.1

∆(k)xn(s) =
[n]q!

[n− k]q!
xn−k
k (s)+c3

(
n

[n− 1]q!

[n− k − 1]q!
− (n− k)

[n]q!

[n− k]q!

)
xn−k−1
k (s)+· · · .

In the case k = n− 1, it becomes

∆(n−1)xn(s) = [n]q!xn−1(s) + c3[n− 1]q! (n− [n]q) . (19)

Now, using the Rodrigues formula (9) for k = n− 1,

∆(n−1)Pn(x(s))q =
An,n−1Bn

ρn−1(s)
∇

(n)
n−1ρn(s) =

An,n−1Bn

ρn−1(s)

∇

∇xn(s)
ρn(s),

as well as the identities ρn(s) = ρn−1(s + 1)σ(s + 1), xn(s) = xn−1(s + 1
2 ) and the

Pearson equation (8) for ρn−1(s), we find

∆(n−1)Pn(x(s))q = An,n−1Bnτn−1(s).

Thus

an =
An,n−1Bnτ̃

′
n−1

[n]q!
= Bn

n−1∏

k=0

{
αq(n+ k − 1)τ̃ ′ + [n+ k − 1]q

σ̃′′

2

}
,

and
bn
an

=
[n]q τ̃n−1(0)

τ̃ ′n−1

+ c3([n]q − n).

So

αn =
Bn

Bn+1

αq(n− 1)τ̃ ′+[n− 1]q
σ̃′′

2

(αq(2n−1)τ̃ ′+[2n−1]q
σ̃′′

2 )(αq(2n)τ̃ ′+[2n]q
σ̃′′

2 )
= −

Bn

Bn+1

λn

[n]q

[2n]q
λ2n

[2n + 1]q
λ2n+1

and

βn =
[n]q τ̃n−1(0)

τ̃ ′n−1

−
[n+ 1]q τ̃n(0)

τ̃ ′n
+ c3([n]q + 1− [n+ 1]q).

Using the Rodrigues formula the following difference-recurrent relation follows [1, 25]

σ(s)
∇Pn(x(s))q

∇x(s)
=

λn

[n]qτ ′n

[
τn(s)Pn(x(s))q −

Bn

Bn+1
Pn+1(x(s))q

]
,

where τn(s) is given by (6), where the identity τ̃ ′n = −
λ2n+1

[2n+ 1]q
has been used.

Then, using the explicit expression for the coefficient αn, we find

σ(s)
∇Pn(x(s))q

∇x(s)
=

λn

[n]q

τn(s)

τ ′n
Pn(x(s))q −

αnλ2n

[2n]q
Pn+1(x(s))q. (20)

This equation defines a raising operator in terms of the backward difference in the
sense that we can obtain the polynomial Pn+1 of degree n + 1 from the lower degree
polynomial Pn.
From the above equation and using the identity ∇ = ∆−∇∆, the second order differ-
ence equation and the three terms recurrence relation we find [1] lowering-type operator:

[σ(s) + τ(s)∆x(s − 1
2 )]

∆Pn(x(s))q
∆x(s)

=
γnλ2n

[2n]q
Pn−1(x(s))q+

[
λn

[n]q

τn(s)

τ ′n
− λn∆x(s− 1

2 )−
λ2n

[2n]q
(x(s)− βn)

]
Pn(x(s))q.

(21)

5



The most general polynomial solution of the q-hypergeometric equation (1) corresponds
to the case

σ(s) = A

4∏

i=1

[s− si]q = Cq−2s
4∏

i=1

(qs − qsi), A,C,not vanishing constants (22)

and has the form [26]

Pn(s)q = Dn 4φ3

(
q−n, q2µ+n−1+

∑4
i=1si , qs1−s, qs1+s+µ

qs1+s2+µ, qs1+s3+µ, qs1+s4+µ ; q , q

)
, (23)

where Dn is a normalizing constant and the basic hypergeometric series pφq are defined
by [21]

rφp

(
a1, . . . , ar
b1, . . . , bp

; q , z

)
=

∞∑

k=0

(a1; q)k · · · (ar; q)k
(b1; q)k · · · (bp; q)k

zk

(q; q)k

[
(−1)kq

k

2
(k−1)

]p−r+1

,

and

(a; q)k =

k−1∏

m=0

(1− aqm), (24)

is the q-analogue of the Pochhammer symbol. Instances of such polynomials are the
Askey–Wilson polynomials, the q-Racah polynomials and big q-Jacobi polynomials
among others [21, 26].

3 The orthonormal functions on nonuniform lattices

In this section we will introduce a set of orthonormal functions which are orthogonal
with respect to the unit weight [9, 15]

ϕn(s) =
√

ρ(s)/d2nPn(x(s))q, (25)

e.g. for the case of discrete orthogonality we have

b−1∑

si=a

ϕn(si)ϕm(si)∆x(si −
1

2
) = δnm.

Next, we will establish several important properties of such functions which gener-
alize, to the nonuniform lattices, the ones given in [22]. In the following we will use the
notation Θ(s) = σ(s) + τ(s)∆x(s− 1

2).
First of all, inserting (25) into (1), (17), (20), (21) we obtain that they satisfy the

following difference equation:

√
Θ(s)σ(s+ 1)

1

∆x(s)
ϕn(s+ 1) +

√
Θ(s− 1))σ(s)

1

∇x(s)
ϕn(s− 1)−

(
Θ(s)

∆x(s)
+

σ(s)

∇x(s)

)
ϕn(s) + λn∆x(s− 1

2 )ϕn(s) = 0,

(26)

the three term recurrence relation:

αn
dn+1

dn
ϕn+1(s) + γn

dn−1

dn
ϕn−1(s) + (βn − x(s))ϕn(s) = 0, (27)

6



the raising-type formula:

L+(s, n)ϕn(s) = αn
λ2n

[2n]q

dn+1

dn
ϕn+1(s), (28)

and the lowering-type formula:

L−(s, n)ϕn(s) = γn
λ2n

[2n]q

dn−1

dn
ϕn−1(s), (29)

where the raising-type operator L+(s, n) and the lowering-type operator L−(s, n) are
given by

L+(s, n) ≡

[
λn

[n]q

τn(s)

τ ′n
−

σ(s)

∇x(s)

]
I+
√

Θ(s− 1)σ(s)
1

∇x(s)
E−, (30)

and

L−(s, n) ≡

[
−

λn

[n]q

τn(s)

τ ′n
+ λn∆x(s− 1

2) +
λ2n

[2n]q
(x(s)− βn)−

Θ(s)

∆x(s)

]
I

+
√

Θ(s)σ(s+ 1)
1

∆x(s)
E+,

(31)

respectively. In the above formulas E−f(s) = f(s− 1), E+f(s) = f(s+1) and I is the
identity operator.

Notice that the last two formulas have a remarkable property of giving all the
solutions ϕn(s). In fact, from (31) setting n = 0 and taking into account that ϕ−1(s) ≡
0 we can obtain ϕ0(s). Then, substituting the obtained function in (30), we can find
all the functions ϕ1(s),. . . , ϕn(s),. . . .

Proposition 3.1 The raising and lowering operators (30) and (31) are mutually ad-
joint.

Proof: The proof is straightforward. In fact using the boundary condition and after
some calculations we obtain, in the case of discrete orthogonality, the expression

b−1∑

si=a

ϕn+1(si)

[
[2n]q
λ2n

L+(si, n)ϕn(si)

]
∆x(si −

1
2 )

=

b−1∑

si=a

[
[2n + 2]q
λ2n+2

L−(si, n+ 1)ϕn+1(si)

]
ϕn(si)∆x(si −

1
2) = αn

dn+1

dn
.

The other cases can be done in an analogous way.

Proposition 3.2 The operator corresponding to the eigenvalue λn in (26) is self ad-
joint.

Proof: Again we will prove the result in the case of discrete orthogonality. Using the
orthogonality conditions σ(a)ρ(a) = σ(b)ρ(b) = 0 (which is a consequence of (13)), we
can write

b−1∑

si=a

ϕn(si)
√

Θ(si − 1)σ(si)
1

∇x(si)
ϕl(si − 1)∆x(si −

1
2)

=

b−2∑

s′
i
=a−1

ϕn(s
′
i + 1)

√
Θ(s′i)σ(s

′
i + 1)

1

∇x(s′i + 1)
ϕl(s

′
i)∆x(s′i +

1
2)

7



=
b−1∑

si=a

ϕn(si + 1)
√

Θ(si)σ(si + 1)
1

∇x(si + 1)
ϕl(si)∆x(si +

1
2)+

ϕn(a)
√

Θ(a− 1)σ(a)
1

∇x(a)
ϕl(a− 1)∆x(a− 1

2)−

ϕn(b)
√

Θ(b− 1)σ(b)
1

∇x(b)
ϕl(b− 1)∆x(b − 1

2 ),

where in the last two sums we first take the operations ∆ and ∇, and then substitute
the corresponding value: e.g. ∆x(a) = x(a+ 1)− x(a).

Now, we use the fact that ϕn(s) =
√

ρ(s)/d2nPn(x(s))q, as well as the boundary
conditions σ(a)ρ(a) = σ(b)ρ(b) = 0, so

√
Θ(a− 1)σ(a)ϕn(a)ϕl(a− 1) =

√
Θ(b− 1)σ(b)ϕn(b)ϕl(b− 1) = 0.

The other terms can be transformed in a similar way. All these yield the expression

b−1∑

si=a

ϕl(si)

{√
Θ(si)σ(si + 1)

1

∆x(si)
ϕn(si + 1)∆x(si +

1
2)+

√
Θ(si − 1)σ(si)

1

∇x(si)
ϕn(si − 1)∆x(si −

1
2)

}
=

=

b−1∑

si=a

ϕn(si)

{√
Θ(si)σ(si + 1)

1

∆x(si)
ϕl(si + 1)∆x(si +

1
2)+

√
Θ(si − 1)σ(si)

1

∇x(si)
ϕl(si − 1)∆x(si −

1
2)

}
,

from where the proposition easily follows.

4 Factorization of difference equation of hypergeometric

type on the nonuniform lattice

We will define from (26) the following operator

H(s, n) ≡
√

Θ(s− 1)σ(s)
1

∇x(s)
E− +

√
Θ(s)σ(s+ 1)

1

∆x(s)
E+−

(
Θ(s)

∆x(s)
+

σ(s)

∇x(s)
− λn∆x(s− 1

2)

)
I.

Clearly, the orthonormal functions satisfy

H(s, n)ϕn(s) = 0.

Let us rewrite the raising and lowering operators in the following way

L+(s, n) = u(s, n)I +
√

Θ(s− 1)σ(s)
1

∇x(s)
E−,

L−(s, n) = v(s, n)I +
√

Θ(s)σ(s+ 1)
1

∆x(s)
E+,

8



where, as before, Θ(s) = σ(s) + τ(s)∆x(s− 1
2), and

u(s, n) =
λn

[n]q

τn(s)

τ ′n
−

σ(s)

∇x(s)
,

v(s, n) = −
λn

[n]q

τn(s)

τ ′n
+ λn∆x(s− 1

2 ) +
λ2n

[2n]q
(x(s)− βn)−

Θ(s)

∆x(s)
.

Proposition 4.1 The functions u(s, n) and v(s, n) satisfy u(s+1, n) = v(s, n+1), or,
equivalently u(s + 1, n − 1) = v(s, n).

The proof of the above proposition is straightforward but cumbersome. We will include
it in appendix A. If we now calculate

L−(s, n+ 1)L+(s, n) = v(s, n + 1)u(s, n) + Θ(s)σ(s+ 1)

(
1

∆x(s)

)2

+

+u(s+ 1, n)

{√
Θ(s− 1)σ(s)

1

∇x(s)
E− +

√
Θ(s)σ(s + 1)

1

∆x(s)
E+

}
,

and substitute the values for u(s, n), v(s, n) and H(s, n) we get

L−(s, n + 1)L+(s, n) = h∓(n)I + u(s+ 1, n)H(s, n),

where the function

h∓(n) =

(
λn

[n]q

τn(s+ 1)

τ ′n
−

σ(s + 1)

∇x(s+ 1)

)(
λn

[n]q

τn(s)

τ ′n
− λn∆x(s− 1

2 )

)
+

λn

[n]q

τn(s+ 1)

τ ′n

Θ(s)

∆x(s)
,

is independent of s. In fact, applying the last equality to the orthonormal function
ϕn(s) and taking into account (28) and (29),

h∓(n) =
λ2n

[2n]q

λ2n+2

[2n + 2]q
αnγn+1.

Similarly,
L+(s, n − 1)L−(s, n) = h±(n)I + u(s, n− 1)H(s, n),

where

h±(n) =

(
−

λn

[n]q

τn(s− 1)

τ ′n
+

λ2n

[2n]q
(x(s − 1)− βn) + λn∆x(s− 3

2)

)
×

(
−

λn

[n]q

τn(s)

τ ′n
+

λ2n

[2n]q
(x(s)− βn) +

σ(s)

∇x(s)

)
−

(
−

λn

[n]q

τn(s)

τ ′n
+

λ2n

[2n]q
(x(s)− βn)

)(
Θ(s− 1)

∆x(s− 1)

)
,

is independent of s. Furthermore, applying the last expression to the functions ϕn(s),
and taking into account (28) and (29), we obtain

h±(n) =
λ2n−2

[2n− 2]q

λ2n

[2n]q
αn−1γn.

Remark: Notice that h±(n+ 1) = h∓(n).
All the above results lead us to our main theorem:
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Theorem 4.1 The operator H(s, n), corresponding to the hypergeometric difference
equation for orthonormal functions ϕn(s), admits the following factorization –usually
called the Infeld-Hull-type factorization–

u(s+ 1, n)H(s, n) = L−(s, n+ 1)L+(s, n)− h∓(n)I, (32)

and
u(s, n)H(s, n+ 1) = L+(s, n)L−(s, n+ 1)− h∓(n)I, (33)

respectively.

Remark: Substituting in the above formulas the expression x(s) = s we obtain the
corresponding results for the uniform lattice cases (Hahn, Kravchuk, Meixner and Char-
lier), considered before by several authors, see e.g. [9, 22, 15] and by taking appropriate
limits (see e.g. [21, 25]), we can recover the classical continuous case (Jacobi, Laguerre
and Hermite).

5 Applications to some q-normalized ortogonal functions

For the sake of completeness we will apply the above results to several families of
orthogonal q-polynomials and their corresponding orthonormal q-functions that are of
interest and appear in several branches of mathematical physics. They are the Al-
Salam & Carlitz polynomials I and II, the big q-Jacobi polynomials, the dual q-Hahn
polynomials, the continuous q-Hermite and the celebrated q-Askey–Wilson polynomials.

The main data for these polynomials are taken from the nice survey [21] except the
case of dual q-Hahn polynomials [3]. Nevertheless, they can be obtained also from the
general formulas given in Section 2.

Finally, let us point out that similar factorization formulas were obtained by other
authors, e.g. Miller in [19] considered the polynomials on the linear exponential lattice
and Bangerezako studied the Askey–Wilson case. Our main aim in this section is to
show how our general formulas lead, in a very easy way, to the needed factorization
formulas of several families for normalized functions –not polynomials–.

5.1 The Al-Salam & Carlitz functions I and II

The Al-Salam & Carlitz polynomials I (and II) appear in certain models of q-harmonic
oscillator , see e.g. [4, 7, 8, 24]. They are polynomials on the exponential lattice
x(s) = qs ≡ x, defined [21] by

U (a)
n (x; q) = (−a)nq

(
n

2

)

2φ1

(
q−n, x−1

q;
qx

a0

)
,

and constitute an orthogonal family with the orthogonality relation (15)

∫ 1

a
U (a)
n (x; q)U (a)

m (x; q)ω(x)dqx = d2nδnm,

where

ω(x) = (qx, a−1qx; q)∞, and d2n = (−a)n(1− q)(q; q)n(q, a, a
−1q; q)∞q

(
n

2

)

.
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As usual, (a1, · · · , ap; q)n = (a1; q)n · · · (ap; q)n, and (a; q)∞ =
∏∞

k=0(1− aqk).
They satisfy a difference equation of the form (1) where

σ(x) = (x− 1)(x − a), τ(x) = τ̃(x) = τ ′x+ τ(0), being τ ′ =
q1/2

1− q
, τ(0) = q1/2

1 + a

q − 1
.

The eigenvalues λn and the coefficients of the TTRR are given by

λn = [n]q
q1−n/2

q − 1
and αn = 1, βn = (1 + a)qn, γn = aqn−1(qn − 1),

respectively. In this case we have

σ̃′′ = 1, σ̃′(0) = −
a+ 1

2
, σ̃(0) = a, τ ′n =

q
1

2
−n

1− q
, τn(0) = q

1−n

2
a+ 1

q − 1
.

The corresponding normalized functions (25) are

ϕn(x) =

√√√√ (qx, a−1qx; q)∞(−a)nq

(
n

2

)

(1− q)(q; q)n(q, a, q/a; q)∞
2ϕ1

(
q−n, x−1

q;
qx

a0

)
.

Defining now the Hamiltonian for these functions ϕn(x)

H(x, n)=

√
a(x−1)(x−a)

x(1− q−1)
E−+

√
a(qx−1)(qx−a)

x(q − 1)
E++

(
q1−n

1−q
x+

q(a+1)

q − 1
−
[2]q
kq

x−1

)
I,

and using that u(x, n) =
aq

1− q
x−1, v(x, n) = u(qx, n− 1) =

a

1− q
x−1, thus

L+(x, n) = u(x, n)I + q

√
a(x− 1)(x− a)

x(q − 1)
E−, where E−f(x) = f(q−1x),

and

L−(x, n) = v(x, n)I +

√
a(qx− 1)(qx− a)

x(q − 1)
E+, where E+f(x) = f(qx),

we have

L−(x, n+ 1)L+(x, n) =
aq1−n(qn+1 − 1)

(q − 1)2
I + v(x, n + 1)H(x, n),

and

L+(x, n− 1)L−(x, n) =
aq2−n(qn − 1)

(q − 1)2
I + u(x, n− 1)H(x, n),

which give the factorization formulas for the Al-Salam & Carlitz functions I. If we now
taking into account that (see [21, p. 115])

V (a)
n (x; q) = U (a)

n (x; q−1),

then, the factorization for the Al-Salam & Carlitz functions II

ϕn(s) = q

(
s

2

)

√√√√ as+n(aq; q)∞q

(
n+1
2

)

(q, aq; q)s(1− q)(q; q)n
2φ0

(
q−n, x

q;
qn

a−

)
,

follows from the factorization for the Al-Salam & Carlitz functions I simply by changing
q to q−1.
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5.2 The big q-Jacobi functions

Now we will consider the most general family of q-polynomials on the exponential
lattice, the so-called big q-Jacobi polynomials, that appear in the representation theory
of the quantum algebras [31]. They were introduced by Hahn in 1949 and are defined
[21] by

Pn(x; a, b, c; q) =
(aq; q)n(cq; q)n
(abqn+1; q)n

3φ2

(
q−n, abqn+1, x

q; q
aq, cq

)
, x(s) = qs ≡ x.

They constitute an orthogonal family, i.e.,
∫ aq

cq
ω(x)Pn(x; a, b, c; q)Pn(x; a, b, c; q)dqx = d2nδnm

where

ω(x) =
(a−1x; q)∞(c−1x; q)∞
(x; q)∞(bc−1x; q)∞

,

d2n =
aq(1− q)(q, c/a, aq/c, abq2; q)∞

(aq, bq, cq, abq/c; q)∞

(1− abq)(q, bq, abq/c; q)n(−ac)−nq
−

(
n

2

)

(abq, abqn+1, abqn+1)n
.

They satisfy the difference equation (1) with

σ(x) = q−1(x− aq)(x− cq) and τ(x) = τ̃(x) = τ ′x+ τ(0),

where

τ ′ =
1− abq2

(1− q)q1/2
and τ(0) = q1/2

a(bq − 1) + c(aq − 1)

1− q
,

and

λn = −q−n/2[n]q
1− abqn+1

1− q
.

They satisfy a TTRR, whose coefficients are

αn = 1, βn = 1−An − Cn, γn = CnAn−1,

where

An =
(1− aqn+1)(1 − cqn+1)(1− abqn+1)

(1− abq2n+1)(1− abq2n+2)
,

Cn = −acqn+1 (1− qn)(1− bqn)(1− abc−1qn)

(1− abq2n)(1− abq2n+1)
.

Also, we have

σ̃′′ =
1 + abq2

q
, σ̃′(0) = −

abq + acq + a+ c

2
, σ̃(0) = acq,

τ ′n =
q−n − abqn+2

q1/2(1− q)
, τn(0) = q

1−n

2
a(bq1+n − 1) + c(aq1+n − 1)

1− q
.

The normalized big q-Jacobi functions are defined by

ϕn(s) =

√
(x/a, x/c; q)∞(aq, bq, abq/c; q)∞(abq, aq, aq, cq, cq; q)n(−ac)n

(x, bx/c, c/a, aq/c, abq2 ; q)∞(1− q)aq(1 − abq)(q, bq, abq/c; q)n
×

3φ2

(
q−n, abqn+1, x

q; q
aq, cq

)
.
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The corresponding Hamiltonian is

H(x, n) =

√
a(x−q)(x−aq)(x−cq)(bx−cq)

x(q−1)
E−+q

√
a(x−1)(x−a)(x−c)(bx−c)

x(q−1)
E++

(
1 + abq2n+1

qn(1− q)
x−

q(a+ ab+ c+ ac)

1− q
+

acq(q + 1)

1− q
x−1

)
I.

Furthermore,

u(x, n) =
abqn+1

1− q
x+Dn −

acq2

q − 1
x−1 and v(x, n) =

abqn+1

1− q
x+Dn−1 −

acq

q − 1
x−1,

where

Dn =
ab(ab+ ac+ a+ c)q2n+3 − a(b+ c+ ab+ bc)qn+2

(1− abq2n+2)(1 − q)
,

thus

L+(x, n) = u(x, n)I+

√
a(x−q)(x−aq)(x−cq)(bx−cq)

x(q − 1)
E−, where E−f(x) = f(q−1x),

and

L−(x, n) = v(x, n)I + q

√
a(x−1)(x−a)(x−c)(bx−c)

x(q − 1)
E+, where E+f(x) = f(qx),

so
L−(x, n+ 1)L+(x, n) = δn+1γn+1I + v(x, n + 1)H(x, n),

L+(x, n − 1)L−(x, n) = δnγnI + u(x, n− 1)H(x, n),

where

δn =
(1− abq2n−1)(1− abq2n+1)

q2n−1(q − 1)2
.

The above formulas are the factorization formulas for the family of the big q-Jacobi
normalized functions.
Since all discrete q-polynomials on the exponential lattice x(s) = c1q

s + c3 —the so
called, q-Hahn class— can be obtained from the big q-Jacobi polynomials by a certain
limit process (see e.g. [2, 21], then from the above formulas we can obtain the factor-
ization formulas for the all other cases in the q-Hahn tableau. Of special interest are
the q-Hahn polynomials and the big q-Laguerre polynomials, which are particular cases
of the big q-Jacobi polynomials when c = q−N−1, N = 1, 2, . . ., and c = 0, respectively.

5.3 The q-dual-Hahn functions

In this section we will deal with the q-dual-Hahn polynomials, introduced in [3, 26]
and closely related with the Clebsh-Gordon coefficients of the q-algebras SUq(2) and
SUq(1, 1) [3]. They are defined on the lattice x(s) = [s]q[s+ 1]q by

W c
n(x(s); a, b)q =

(−1)n(qa−b+1; q)n(q
a+c+1; q)n

qn/2(3a−b+c+1+n)knq (q; q)n
3φ2

(
q−n, qa−s, qa+s+1

q; q
qa−b+1, qa+c+1

)
,

and satisfy a discrete orthogonality (14) with respect to the weight function

ρ(s) =
q

1

2
((b−1)2−(2s−1)(a+c))

(1− q)2(a+c−b)+1

(qs−a+1, qs−c+1, qs+b+1, qb−s; q)∞
(q, q, qs+a+1, qs+c+1; q)∞

,
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where −1
2 ≤ a < b− 1, |c| < a+ 1, and for this weight function the norm is

d2n =
q

1

4
(−4ab−4bc+6a+6c−8b+6+4n(a+c−2b)−n2+17n+2b2)

(1− q)2(a+c−b+1)+3n

(qb−c−n, qb−a−n; q)∞
[n]q!(q, qa+c+n+1; q)∞

.

These polynomials satisfy a TTRR (17) with

αn=1,

βn=q
1

2
(2n−b+c+1)[b−a−n+1]q[a+c+n+1]q+q

1

2
(2n+2a+c−b+1) [n]q[b−c−n]q+[a]q[a+1]q,

γn=q2n+c+a−b[a+ c+ n]q[b− a− n]q[b− c− n]q[n]q,

and the second order difference equation (1), whose eigenvalues are λn = [n]qq
1

2
−n

2 and

σ(s) = q
1

2
(s+c+a−b+2)[s − a]q[s+ b]q[s− c]q and τ(x) = τ̃(x) = τ ′x+ τ(0),

with τ ′ = −1 and τ(0) = q
1

2
(a−b+c+1)[a+ 1]q[b− c− 1]q + q

1

2
(c−b+1)[b]q[c]q.

Also we will need the values

σ̃′′ = kq, σ̃′(0) =
1

2kq
(2[2]q − q

1

2
−b − q

1

2
+a − q

3

2
+a+c−b − q

1

2
+c),

σ̃(0)=
1

2k3q
(2q1+a−b+q−1 +q+2q1+c−b+ 2q1+a+c−(1+q)(q−b+qa+qc+q1+a+c−b)),

τ ′n=−q−n, τn(0)=q
1

2
(c−b−n+1)[c+ n

2 ]q[b−
n
2 ]q+q

1

2
(a+c−b+1−n

2
)[a+ n

2+1]q[b−c−n−1]q,

In this case, the Hamiltonian, associated with the q-dual Hahn normalized functions√
ρ(s)/d2nW

c
n(x(s); a, b)q , is

H(s, n) = q
1

2
(c+a−b+2)

√
([s + 1]2q − [a]2q)([b]

2
q − [s+ 1]2q)([s + 1]2q − [c]2q)

[2s+ 2]q
E++

q
1

2
(c+a−b+2)

√
([s]2q − [a]2q)([b]

2
q − [s]2q)([s]

2
q − [c]2q)

[2s]q
E− − q

1

2
−n

2 [n]q[2s + 1]qI+

q
1

2
(c+a−b+2)

(
[s− a]q[s + b]q + [s− c]q

[2s]q
−

[s + 1− a]q[s+ 1 + b]q[s+ 1− c]q
[2s + 2]q

)
I,

where E+f(s) = f(s+ 1) and E−f(s) = f(s− 1). Then, using that

u(s, n) = q
1

2
−n

2 x(s+ n/2)− q
1

2
+n

2 (q
1

2
(c−b−n+1)[c+ n

2 ]q[b−
n
2 ]q+

q
1

2
(a+c−b+1−n

2
)[a+ n

2 + 1]q[b− c− n− 1]q)− q
1

2
(s+c+a−b+2) [s− a]q[s + b]q[s− c]q

[2s]q
,

and taking into account that v(s, n) = u(s+ 1, n − 1), we find

L+(s, n) = u(s, n)I + q
1

2
(c+a−b+2)

√
([s]2q − [a]2q)([b]

2
q − [s]2q)([s]

2
q − [c]2q)

[2s]q
E−,

and

L−(s, n) = v(s, n)I + q
1

2
(c+a−b+2)

√
([s + 1]2q − [a]2q)([b]

2
q − [s+ 1]2q)([s+ 1]2q − [c]2q)

[2s+ 2]q
E+.
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Thus
L−(s, n + 1)L+(s, n) = q−2nγn+1I + v(s, n + 1)H(s, n),

and
L+(s, n− 1)L−(s, n) = q−2n+2γnI + u(s, n− 1)H(s, n),

are the factorization formulas for the q-dual Hahn normalized functions.

5.4 The Askey–Wilson functions

Finally we will consider the family of Askey–Wilson polynomials. They are polynomials
on the lattice x(s) = 1

2(q
s + q−s) ≡ x, defined by [21]

pn(x(s); a, b, c, d) =
(ab; q)n(ac; q)n(ad; q)n

an
4φ3

(
q−n, qn−1abcd, ae−iθ, aeiθ

q; q
ab, ac, ad

)
,

i.e., they correspond to the general case (23) when qs1 = a, qs2 = b, qs3 = c, qs4 = d.
Their orthogonality relation is of the form

∫ 1

−1
ω(x)pn(x; a, b, c, d)pm(x; a, b, c, d)

√
1− x2κqdx = δnmd2n, qs = eiθ, x = cos θ,

where

ω(x) =
h(x, 1)h(x,−1)h(x, q

1

2 )h(x,−q
1

2 )

2πκq(1− x2)h(x, a)h(x, b)h(x, c)h(x, d)
, h(x, α) =

∞∏

k=0

[1− 2αxqk + α2q2k],

and the norm is given by

d2n =
(abcdqn−1; q)n(abcdq

2n; q)∞
(qn+1, abqn, acqn, adqn, bcqn, bdqn, cdqn; q)∞

.

The Askey–Wilson polynomials satisfy the difference equation (1) with

σ(s) = −q−2s+1/2κ2q(q
s − a)(qs − b)(qs − c)(qs − d), κq = (q

1

2 − q−
1

2 )

and τ(x) = τ̃(x) = τ ′x+ τ(0), where

τ ′ = 4(q − 1)(1 − abcd), τ(0) = 2(1 − q)(a+ b+ c+ d− abc− abd− acd− bcd).

Furthermore, they satisfy the TTRR (17) with coefficients

αn = 1, βn =
a+ a−1 − (An + Cn)

2
, γn =

CnAn−1

4
,

where An, Cn are defined by

An =
(1− abqn)(1− acqn)(1− adqn)(1 − abcdqn−1)

a(1− abcdq2n−1)(1− abcdq2n)
,

Cn =
a(1− qn)(1 − bcqn−1)(1− bdqn−1)(1− cdqn−1)

(1− abcdq2n−2)(1 − abcdq2n−1)
,
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and whose eigenvalues are λn = 4q−n+1(1− qn)(1 − abcdqn−1). In addition, we have

σ̃′′ = −4(q − 1)2(1 + abcd)q−1/2,

σ̃′(0) = (q − 1)2(a+ b+ c+ d+ abc+ abd+ acd+ bcd)q−1/2,

σ̃(0) = (q − 1)2(1− ab− ac− ad− bc− bd− cd+ abcd)q−1/2,

τ ′n = 4q−n(q − 1)(1 − abcdq2n),

τn(0) = 2(q − 1)(−a− b− c− d+ (abc+ abd+ acd+ bcd)qn)q−n/2.

Defining now the normalized functions (see (15))
√

ω(x)/d2npn(x; a, b, c, d), the corre-
sponding Hamiltonian H(s, n) is

H(s, n) =
2q3/2

[2s − 1]q
G(s, a, b, c, d)E− +

2q3/2

[2s + 1]q
G(s + 1, a, b, c, d)E+ +

2

(
q−2s+1/2

∏4
i=1(1− qsi+s)

[2s+ 1]q
+ q−2s+1/2

∏4
i=1(q

s − qsi)

[2s − 1]q
+

q−n+1κ2q(1− qn)(1− abcdqn−1)[2s]q

)
I

where

G(s, a, b, c, d) =

√√√√
4∏

i=1

(1− 2qsiq−1/2x(s− 1/2) + q−1q2si),

We now define

u(s, n) = Dnxn(s) +DnEn + q−2s+1/2 (q
s − a)(qs − b)(qs − c)(qs − d)

[2s − 1]q

where
Dn = −4q−n/2+1/2(q − 1)(1 − abcdqn−1).

En =
(−a− b− c− d+ (abc+ abd+ acd+ bcd)qn)qn/2

2(1 − abcdq2n)
.

Taking into account that v(s, n) = u(s+ 1, n − 1), we find

L+(s, n) = u(s, n)I +
2q3/2

[2s − 1]q
G(s, a, b, c, d)E− ,

L−(s, n) = v(s, n)I +
2q3/2

[2s+ 1]q
G(s+ 1, a, b, c, d)E+ ,

where E−f(s) = f(s− 1) and E+f(s) = f(s+ 1). Thus,

L−(s, n + 1)L+(s, n) = D2nD2n+2γn+1I + v(s, n + 1)H(s, n),

and
L+(s, n− 1)L−(s, n) = D2n−2D2nγnI + u(s, n− 1)H(s, n),
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which is the factorization formula for the Askey–Wilson functions.
To conclude this paper let us consider the special case of Askey–Wilson polynomials
when a = b = c = d = 0, i.e., the continuous q-Hermite polynomials

Hn(x|q) = 2−neinθ2φ0

(
q−n, 0

q; qne−2iθ

—

)
, x = cos θ.

These polynomials are closely related with the q-harmonic oscilator model introduced
by Biedenharn [13] and Macfarlane [23], as it was pointed out in [8], where the factor-
ization for the continuous q-Hermite polynomials were considered first. If we substitute
a = b = c = d = 0 in the above formulas, we obtain the factorization for the q-Hermite
functions

ϕn(x) =

√
h(x, 1)h(x,−1)h(x, q1/2)h(x,−q1/2)(qn+1; q)∞

2πκq(1− x2)
Hn(x|q).

In fact, since for continuous q-Hermite polynomials

σ(s) = −κ2qq
2s+1/2, τ(s) = 4(q − 1)x(s), λn = 4q−n+1(1− qn),

and the coefficients for the three-term recurrence relation are αn = 1, βn = 0, γn =
(1− qn)/4, then we obtain

H(s, n) =
2q3/2

[2s− 1]q
E−+

2q3/2

[2s + 1]q
E++2

(
q−2s+1/2

[2s + 1]q
+

q2s+1/2

[2s − 1]q
−q−n+1κ2q(1−qn)[2s]q

)
I,

L+(s, n) =

(
−4q−n/2+1/2(q − 1)x(s + n/2) +

q2s+1/2

[2s − 1]q

)
I +

2q3/2

[2s− 1]q
E−,

L−(s, n) =

(
−4q−n/2+1(q − 1)x(s + n/2 + 1/2) +

q2s+5/2

[2s + 1]q

)
I +

2q3/2

[2s+ 1]q
E−

and h±(n) = 4κ2qq
−2n+1(1− qn).

Acknowledgements

The authors thank N. Atakishiyev and Yu. F. Smirnov for interesting discussions and
remarks that allowed us to improve this paper substantially, as well as the referees for
their remarks. The work has been partially supported by the Ministerio de Ciencias y
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Appendix A

Here, for the sake of completeness, we will prove Proposition 4.1, by showing that u(s+1, n)−
v(s, n+ 1) = 0. To do that, we start with computing the difference

u(s+ 1, n)− v(s, n+ 1) =
λn

[n]q

τn(s+ 1)

τ ′n
−

∆σ(s)

∆x(s)
+

λn+1

[n+ 1]q

τn+1(s)

τ ′n+1

− λn+1∆x
(
s− 1

2

)
−

λ2n+2

[2n+ 2]q
(x(s) − βn+1) +

τ(s)∆x
(
s− 1

2

)

∆x(s)
.
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Now we use the expansion τn(s+ 1) = τ ′nxn(s+ 1) + τn(0). Since

∆(x2(s))

∆x(s)
=

x2(s+ 1)− x2(s)

x(s + 1)− x(s)
= x(s+ 1) + x(s) = C1q

s(q + 1) + C2q
−s(q−1 + 1) + 2C3 =

(C1q
s+ 1

2 + C2q
−s− 1

2 )[2]q + 2C3 = [2]qx1(s) + (2− [2]q)C3,

x(s)∆x(s −
1

2
) = x(s)(C1q

s− 1
2 (q − 1) + C2q

−s+ 1
2 (q−1 − 1)) = x(s)(C1q

s − C2q
−s)kq =

(C2
1q

2s − C2
2q

−2s)kq + C3(C1q
s − C2q

−s)kq ,

where kq = q
1
2 − q−

1
2 ,

∆

∆x(s)

(
x(s)∆x(s − 1

2 )
)
=

(
(C2

1q
2s+1 + C2

2q
−2s−1)[2]q + C3(C1q

s+ 1
2 + C2q

−s− 1
2 )

C1qs+
1
2 − C2q−s− 1

2

)
kq,

and
∆

∆x(s)

(
∆x(s−

1

2
)
)
=

∆

∆x(s)

(
(C1q

s − C2q
−s)kq

)
=

C1q
s+ 1

2 + C2q
−s− 1

2

C1qs+
1
2 − C2q−s− 1

2

kq.

Then

∆σ(s)

∆x(s)
=

∆

∆x(s)

(
σ̃(s)−

1

2
τ̃ (s)∆x(s − 1

2 )

)
=

=
∆

∆x(s)

(
σ̃′′

2
x2(s) + σ̃′(0)x(s) + σ̃(0)−

1

2
(τ ′x(s) + τ(0))∆x(s− 1

2 )

)
=

σ̃′′

2
([2]qx1(s) + (2− [2]q)C3) + σ̃′(0)−

1

2
τ(0)

(
C1q

s+ 1
2 + C2q

−s− 1
2

C1qs+
1
2 − C2q−s− 1

2

)
kq−

1

2
τ ′

(
[2]q(C

2
1q

2s+1 + C2
2q

−2s−1) + C3(C1q
s+ 1

2 + C2q
−s− 1

2 )

C1qs+
1
2 − C2q−s− 1

2

)
kq.

This yields for u(s+ 1, n)− v(s, n+ 1) the expression

=

[
λn

[n]q
xn(s+ 1) +

λn

[n]q

τn(0)

τ ′n

]
−

[
σ̃′′

2
[2]qx1(s) +

C3

2
(2− [2]q)σ̃

′′ + σ̃′(0)−

τ̃ ′

2

(
[2]q(C

2
1q

2s+1 + C2
2q

−2s−1)

C1qs+
1
2 − C2q−s− 1

2

+
C3x1(s)− C2

3

C1qs+
1
2 − C2q−s− 1

2

)
kq−

τ(0)

2

(
x1(s)− C3

C1qs+
1
2 − C2q−s− 1

2

)
kq

]
+

λn+1

[n+ 1]q

τn+1(s)

τ ′n+1

− λn+1∆x
(
s− 1

2

)
−

λ2n+2

[2n+ 2]q

[
C1q

s + C2q
−s + C3 −

[n+ 1]qτn(0)

τ ′n
+

[n+ 2]qτn+1(0)

τ ′n+1

− C3(1 + [n+ 1]q − [n+ 2]q)

]
+

τ(s)∆x
(
s− 1

2

)

∆x(s)
.

Next, we expand ∆xn(s) and
σ̃′′

2 [2]x1(s), make some straightforward calculations and use the
identities:

λn

[n]q

τn(0)

τ ′n
+ [n+ 1]q

λ2n+2

[2n+ 2]q

τn(0)

τ ′n
=

(
λn

[n]q
+ [n+ 1]q

λ2n+2

[2n+ 2]q

)
τn(0)

τ ′n
= −[n+ 2]qτn(0),

λn+1

[n+ 1]q

τn+1(s)

τ ′n+1

− [n+ 2]q
λ2n+2

[2n+ 2]q

τn+1(0)

τ ′n+1

= [n+ 1]qτn+1(0) +
λn+1

[n+ 1]q
xn+1(s),
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as well as

λn

[n]q
(C1q

s+1+n

2 + C2q
−s−1−n

2 )−
σ̃′′

2
[2]q(C1q

s+ 1
2 + C2q

−s− 1
2 )−

λ2n+2

[2n+ 2]q
(C1q

s + C2q
−s)−

λn+1(C1q
s − C2q

−s)kq +
1

2
τ ′(C1q

s+ 1
2 + C2q

−s− 1
2 )(q + q−1) =

C1q
sτ ′

2
(qn+

1
2 + q

1
2 )+

C1q
sσ̃′′

2(q
1
2 − q−

1
2 )

(qn+
1
2 − q

1
2 ) +

C2q
−sτ ′

2
(q−n− 1

2 + q−
1
2 ) +

C2q
−sσ̃′′

2(q
1
2 − q−

1
2 )

(−q−n− 1
2 + q−

1
2 ) =

= −
λn+1

[n+ 1]q
(C1q

s+n+1

2 + C2q
−s−n+1

2 ),

we find

= −
λn+1

[n+ 1]q

(
C1q

s+ n+1

2 + C2q
−s−n+1

2

)
+ C3

λn

[n]q
− [n+ 2]qτn(0)− C3σ̃

′′ − σ̃′(0) +
1

2
τ ′C3kq+

1

2
τ(0)kq+[n+1]qτn+1(0)+

λn+1

[n+1]q
(C1q

s+n+1

2 +C2q
−s−n+1

2 +C3)+
λ2n+2

[2n+2]q
C3([n+1]q−[n+2]q).

Finally, we substitute the expression for τn(0) and use the identities

−[n+ 2]q[n]q − 1 + [n+ 1]q[n+ 1]q = 0,

−[n+ 2]q(q
n/2 + q−n/2) + kq + [n+ 1]q(q

(n+1)/2 + q(n+1)/2) = 0,

and the result follows.
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