14 research outputs found

    Spatial turnover of multiple ecosystem functions is more associated with plant than soil microbial β-diversity

    No full text
    Biodiversity—both above- and belowground—influences multiple functions in terrestrial ecosystems. Yet, it is unclear whether differences in above- and belowground species composition (β-diversity) are associated with differences in multiple ecosystem functions (e.g., spatial turnover in ecosystem function). Here, we partitioned the contributions of above- and belowground β-diversity and abiotic factors (geographic distance, differences in environments) on the spatial turnover of multiple grassland ecosystem functions. We compiled a dataset of plant and soil microbial communities and six indicators of grassland ecosystem functions (i.e., plant aboveground live biomass, plant nitrogen [N], plant phosphorus [P], root biomass, soil total N, and soil extractable P) from 18 grassland sites on four continents contributing to the Nutrient Network experiment. We used Mantel tests and structural equation models to disentangle the relationship between above- and belowground β-diversity and spatial turnover in grassland ecosystem functions. We found that the effects of abiotic factors on the spatial turnover of ecosystem functions were largely indirect through their influences on above- and belowground β-diversity, and that spatial turnover of ecosystem function was more strongly associated with plant β-diversity than with soil microbial β-diversity. These results indicate that changes in above- and belowground species composition are one mechanism that interacts with environmental change to determine variability in multiple ecosystem functions across spatial scales. As grasslands face global threats from shrub encroachment, conversion to agriculture, or are lost to development, the functions and services they provide will more strongly converge with increased aboveground community homogenization than with soil microbial community homogenization

    Iron deficiency across chronic inflammatory conditions : international expert opinion on definition, diagnosis, and management

    Get PDF
    Iron deficiency, even in the absence of anemia, can be debilitating, and exacerbate any underlying chronic disease, leading to increased morbidity and mortality. Iron deficiency is frequently concomitant with chronic inflammatory disease; however, iron deficiency treatment is often overlooked, partially due to the heterogeneity among clinical practice guidelines. In the absence of consistent guidance across chronic heart failure, chronic kidney disease and inflammatory bowel disease, we provide practical recommendations for iron deficiency to treating physicians: definition, diagnosis, and disease-specific diagnostic algorithms. These recommendations should facilitate appropriate diagnosis and treatment of iron deficiency to improve quality of life and clinical outcomes

    Global-scale tidal variability during the PSMOS campaign of June-August 1999: interaction with planetary waves

    No full text
    During the PSMOS Global-scale tidal variability experiment campaign of June 1-August 31, 1999, a network of radars made measurements of winds, waves and tides in the mesosphere/lower-thermosphere region over a wide range of latitudes. Clear evidence was found that fluctuations in tidal amplitudes occur on a global scale in both hemispheres, and that at least some of these fluctuations are periodic in nature. Modulation of the amplitude of the 12 h tide was particularly evident at periods of 10 and 16 days, suggesting a non-linear interaction with planetary waves of those periods to be responsible. In selected cases, the secondary waves predicted from non-linear theory could be identified and their zonal wave numbers determined. In some, but not all, cases the longitudinal structure of the secondary waves supports the theory of planetary-wave/tidal interaction being responsible for the observed tidal modulation. It was noted also that beating between a 12.4-lunar and the solar tide could produce a near 16-day modulation of the 12 h tide amplitude that is frequently observed in late summer

    Global-scale tidal structure in the mesosphere and lower thermosphere during the PSMOS campaign of June-August 1999 and comparisons with the global-scale wave model

    No full text
    Observations of mean winds and semidiurnal and diurnal tides in the mesosphere/lower-thermosphere (MLT) region were made during the 3-month Planetary-Scale Mesopause Observing System Summer 1999 campaign. Data from 22 ground-based radars (and from two other instruments with measurements for the same period but in 1998) allow us to investigate the ability of the GSWM-00 to simulate the solar tides in the mesopause region (90-95 km). Here we have found that the GSWM-00 provides an increasingly reasonable estimate of most of the tidal characteristics in the MLT region. However, the representation of the 24 h tide appears superior to that of the 12 h tide. Some of these discrepancies are studied in detail. In particular, the observations reveal significant 12 h tidal amplitudes at high latitudes in the Northern Hemisphere summer. There is evidence for relation between the longitudinal variability of the mean zonal wind and the tidal characteristics seen from the radar wind measurements in the summer middle latitudes and a quasi-stationary planetary wave with zonal wave number one

    Atrophy and hypertrophy of skeletal muscles: structural and functional aspects

    No full text
    corecore