63 research outputs found

    The human eye-movement response to maintained surface galvanic vestibular stimulation

    Get PDF

    Plasticity during Vestibular Compensation: The Role of Saccades

    Get PDF
    This paper is focused on one major aspect of compensation: the recent measures of saccadic responses to high acceleration head turns during human vestibular compensation and their possible implications for recovery after unilateral vestibular loss (UVL). New measurement techniques have provided additional insights into how patients recover after UVL and have given clues for vestibular rehabilitation. Prior to this it has not been possible to quantify the level of function of all the peripheral vestibular sense organs. Now it is. By using vestibular-evoked myogenic potentials to measure utricular and saccular function and by new video head impulse testing to measure semicircular canal function to natural values of head accelerations. With these new video procedures it is now possible to measure both slow phase eye velocity and also saccades during head movements with natural values of angular acceleration. The present evidence is that after UVL there is little or no restoration/compensation of slow phase eye velocity responses to natural head accelerations. It is doubtful as to whether the modest changes in slow phase eye velocity to small angular accelerations are functionally effective during compensation. On the other hand it is now clear that saccades can play a very important role in helping patients compensate and return to a normal lifestyle. Preliminary evidence suggests that different patterns of saccadic response may predict how well patients recover. Furthermore it may be possible to train patients to produce more effective saccadic patterns in the first days after their unilateral loss and possibly improve their compensation process. Some patients do learn new strategies, new behaviors, to conceal their inadequate vestibulo-ocular response but when those strategies are prevented from operating by using passive, unpredictable, high acceleration natural head movements, as in the head impulse test, the vestibular loss can be demonstrated. It is those very strategies which the tests exclude, which may be the cause of their successful compensation

    Enhanced Video-Oculography System

    Get PDF
    A previously developed video-oculography system has been enhanced for use in measuring vestibulo-ocular reflexes of a human subject in a centrifuge, motor vehicle, or other setting. The system as previously developed included a lightweight digital video camera mounted on goggles. The left eye was illuminated by an infrared light-emitting diode via a dichroic mirror, and the camera captured images of the left eye in infrared light. To extract eye-movement data, the digitized video images were processed by software running in a laptop computer. Eye movements were calibrated by having the subject view a target pattern, fixed with respect to the subject s head, generated by a goggle-mounted laser with a diffraction grating. The system as enhanced includes a second camera for imaging the scene from the subject s perspective, and two inertial measurement units (IMUs) for measuring linear accelerations and rates of rotation for computing head movements. One IMU is mounted on the goggles, the other on the centrifuge or vehicle frame. All eye-movement and head-motion data are time-stamped. In addition, the subject s point of regard is superimposed on each scene image to enable analysis of patterns of gaze in real time

    Validation of 24-hour ambulatory gait assessment in Parkinson's disease with simultaneous video observation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parkinson's disease (PD) is a neurodegenerative disorder resulting in motor disturbances that can impact normal gait. Although PD initially responds well to pharmacological treatment, as the disease progresses efficacy often fluctuates over the course of the day, and clinical management would benefit from long-term objective measures of gait. We have previously described a small device worn on the shank that uses acceleration and angular velocity sensors to calculate stride length and identify freezing of gait in PD patients. In this study we extend validation of the gait monitor to 24-h using simultaneous video observation of PD patients.</p> <p>Methods</p> <p>A sleep laboratory was adapted to perform 24-hr video monitoring of patients while wearing the device. Continuous video monitoring of a sleep lab, hallway, kitchen and conference room was performed using a 4-camera security system and recorded to hard disk. Subjects (3) wore the gait monitor on the left shank (just above the ankle) for a 24-h period beginning around 5 pm in the evening. Accuracy of stride length measures were assessed at the beginning and end of the 24-h epoch. Two independent observers rated the video logs to identify when subjects were walking or lying down.</p> <p>Results</p> <p>The mean error in stride length at the start of recording was 0.05 m (SD 0) and at the conclusion of the 24 h epoch was 0.06 m (SD 0.026). There was full agreement between observer coding of the video logs and the output from the gait monitor software; that is, for every video observation of the subject walking there was a corresponding pulse in the monitor data that indicated gait.</p> <p>Conclusions</p> <p>The accuracy of ambulatory stride length measurement was maintained over the 24-h period, and there was 100% agreement between the autonomous detection of locomotion by the gait monitor and video observation.</p

    Applications of brain imaging methods in driving behaviour research

    Get PDF
    Applications of neuroimaging methods have substantially contributed to the scientific understanding of human factors during driving by providing a deeper insight into the neuro-cognitive aspects of driver brain. This has been achieved by conducting simulated (and occasionally, field) driving experiments while collecting driver brain signals of certain types. Here, this sector of studies is comprehensively reviewed at both macro and micro scales. Different themes of neuroimaging driving behaviour research are identified and the findings within each theme are synthesised. The surveyed literature has reported on applications of four major brain imaging methods. These include Functional Magnetic Resonance Imaging (fMRI), Electroencephalography (EEG), Functional Near-Infrared Spectroscopy (fNIRS) and Magnetoencephalography (MEG), with the first two being the most common methods in this domain. While collecting driver fMRI signal has been particularly instrumental in studying neural correlates of intoxicated driving (e.g. alcohol or cannabis) or distracted driving, the EEG method has been predominantly utilised in relation to the efforts aiming at development of automatic fatigue/drowsiness detection systems, a topic to which the literature on neuro-ergonomics of driving particularly has shown a spike of interest within the last few years. The survey also reveals that topics such as driver brain activity in semi-automated settings or the brain activity of drivers with brain injuries or chronic neurological conditions have by contrast been investigated to a very limited extent. Further, potential topics in relation to driving behaviour are identified that could benefit from the adoption of neuroimaging methods in future studies

    Strabismus measurements with novel video goggles

    Full text link
    PURPOSE: To assess the validity of a novel, simplified, noninvasive test for strabismus using video goggles. DESIGN: Cross-sectional method comparison study in which the new test, the strabismus video goggles, is compared with the existing reference standard, the Hess screen test. PARTICIPANTS: We studied 41 adult and child patients aged ≄6 years with ocular misalignment owing to congenital or acquired paralytic or comitant strabismus and 17 healthy volunteers. METHODS: All participants were tested with binocular infrared video goggles with built-in laser target projection and liquid crystal display shutters for alternate occlusion of the eyes and the conventional Hess screen test. In both tests, ocular deviations were measured on a 9-point target grid located at 0±15° horizontal and vertical eccentricity. MAIN OUTCOME MEASURES: Horizontal and vertical ocular deviations at 9 different gaze positions of each eye were measured by the strabismus video goggles and the Hess screen test. Agreement was quantified as the intraclass correlation coefficient. Secondary outcomes were the utility of the goggles in patients with visual suppression and in children. RESULTS: There was good agreement between the strabismus video goggles and the Hess screen test in the measurements of horizontal and vertical deviation (intraclass correlation coefficient horizontal 0.83, 95% confidence interval [0.77, 0.88], vertical 0.76, 95% confidence interval [0.68, 0.82]). Both methods reproduced the characteristic strabismus patterns in the 9-point grid. In contrast to Hess screen testing, strabismus video goggle measurements were even possible in patients with comitant strabismus and visual suppression. CONCLUSIONS The new device is simple and is fast and accurate in measuring ocular deviations, and the results are closely correlated with those obtained using the conventional Hess screen test. It can even be used in patients with visual suppression who are not suitable for the Hess screen test. The device can be applied in children as young as 6 years of age

    ÎŒVEMP: A Portable Interface to Record Vestibular Evoked Myogenic Potentials (VEMPs) With a Smart Phone or Tablet

    No full text
    Background: Cervical VEMPs and ocular VEMPs are tests for evaluating otolith function in clinical practice. We developed a simple, portable and affordable device to record VEMP responses on patients, named ÎŒVEMP. Our aim was to validate and field test the new ÎŒVEMP device.Methods: We recorded cervical VEMPs and ocular VEMPs in response to bone conducted vibration using taps tendon hammer to the forehead (Fz) and to air conducted sounds using clicks. We simultaneously recorded VEMP responses (same subject, same electrode, same stimuli) in three healthy volunteers (2 females, age range: 29–57 years) with the ÎŒVEMP device and with a standard research grade commercial (CED) system used in clinics. We also used the ÎŒVEMP device to record VEMP responses from six patients (6 females, age mean±SD: 50.3 ± 20.8 years) with classical peripheral audio-vestibular diseases (unilateral vestibular neuritis, unilateral neurectomy, bilateral vestibular loss, unilateral superior canal dehiscence, unilateral otosclerosis).Results: The first part of this paper compared the devices using simultaneous recordings. The average of the concordance correlation coefficient was rc = 0.997 ± 0.003 showing a strong similarity between the measures. VEMP responses recorded with the ÎŒVEMP device on patients with audio-vestibular diseases were similar to those typically found in the literature.Conclusions: We developed, validated and field tested a new device to record ocular and cervical VEMPs in response to sound and vibration.This new device is portable (powered by a phone or tablet) with pocket-size dimensions (105 × 66 × 27 mm) and light weight (150 g). Although further studies and normative data are required, our ÎŒVEMP device is simpler (easier to use) and potentially more accessible than standard, commercially available equipment

    The effect of spaceflight on the otolith-mediated ocular counter-roll

    Get PDF
    The otoliths of the vestibular system are seen as the primary gravitational sensors and are responsible for a compensatory eye torsion called the ocular counter-roll (OCR). The OCR ensures gaze stabilization and is sensitive to a lateral head roll with respect to gravity and the Gravito-Inertial Acceleration (GIA) vector during e.g., centrifugation. This otolith-mediated reflex will make sure you will still be able to maintain gaze stabilization and postural stability when making sharp turns during locomotion. To measure the effect of prolonged spaceflight on the otoliths, we measured the OCR induced by off-axis centrifugation in a group of 27 cosmonauts before and after their 6-month space mission to the International Space Station (ISS). We observed a significant decrease in OCR early post-flight, with first- time flyers being more strongly affected compared to frequent or experienced flyers. Our results strongly suggest that experienced space crew have acquired the ability to adapt faster after G-transitions and should therefore be sent for more challenging space missions, e.g., Moon or Mars, because they are noticeably less affected by microgravity regarding their vestibular system

    Investigating the use of Virtual Reality in teaching chemistry to undergraduate students

    Get PDF
    Virtual Reality (VR) has become a much more common household commodity thanks to the proliferation of more affordable VR devices. Whilst its use in the gaming industry is widespread, its application in pedagogical environments is underdeveloped, particularly in chemistry. Hence, whether VR will aid or hinder the teaching and learning of chemistry is currently a topic of research and debate (Won, Mocerino, Tang, Treagust & Tasker, 2019). This project seeks to generate a range of VR materials designed to support students learning undergraduate chemistry, with the specific topics decided in consultation with undergraduate student researchers and various academic members of staff. This work is being undertaken in the X-reality (i.e. VR and other forms of augmented realities) laboratories of the Faculty of Science at the University of Sydney. Preliminary materials are being generated and will pilot tested with both students and teaching staff, with all data being audio recorded using a think-aloud protocol. Follow up interviews will also be conducted with all participants. Student understanding will then be tested with common theoretical questions and concept inventories. The results of these trails will be discussed and their implications on the use of VR in the teaching and learning of chemistry considered
    • 

    corecore