22,032 research outputs found

    Land use change detection with LANDSAT-2 data for monitoring and predicting regional water quality degradation

    Get PDF
    There are no author-identified significant results in this report

    Nernst and Seebeck effect in a graphene nanoribbon

    Get PDF
    The thermoelectric power, including the Nernst and Seebeck effects, in graphene nanoribbon is studied. By using the non-equilibrium Green function combining with the tight-binding Hamiltonian, the Nernst and Seebeck coefficients are obtained. Due to the electron-hole symmetry, the Nernst coefficient is an even function of the Fermi energy while the Seebeck coefficient is an odd function regardless of the magnetic field. In the presence of a strong magnetic field, the Nernst and Seebeck coefficients are almost independent of the chirality and width of the nanoribbon, and they show peaks when the Fermi energy crosses the Landau levels. The height of nn-th (excluding n=0n=0) peak is [ln2/n][\ln2/|n|] for the Nernst effect and is ln2/n\ln2/n for the Seebeck effect. For the zeroth peak, it is abnormal with height [2ln2][2\ln2] for the Nernst effect and the peak disappears for the Seebeck effect. When the magnetic field is turned off, however, the Nernst effect is absent and only Seebeck effect exists. In this case, the Seebeck coefficient strongly depends on the chirality of the nanoribbon. The peaks are equidistant for the nanoribbons with zigzag edge but are irregularly distributed for the armchair edge. In particular, for the insulating armchair ribbon, the Seebeck coefficient can be very large near the Dirac point. When the magnetic field varies from zero to large values, the differences among the Seebeck coefficients for different chiral ribbons gradually vanish and the nonzero value of Nernst coefficient appears first near the Dirac point then gradually extents to the whole energy region.Comment: 8 pages, 7 figure

    Improved position measurement of nano electromechanical systems using cross correlations

    Full text link
    We consider position measurements using the cross-correlated output of two tunnel junction position detectors. Using a fully quantum treatment, we calculate the equation of motion for the density matrix of the coupled detector-detector-mechanical oscillator system. After discussing the presence of a bound on the peak-to-background ratio in a position measurement using a single detector, we show how one can use detector cross correlations to overcome this bound. We analyze two different possible experimental realizations of the cross correlation measurement and show that in both cases the maximum cross-correlated output is obtained when using twin detectors and applying equal bias to each tunnel junction. Furthermore, we show how the double-detector setup can be exploited to drastically reduce the added displacement noise of the oscillator.Comment: 9 pages, 1 figure; v2: new Sec.

    Calculation of the current noise spectrum in mesoscopic transport: an efficient quantum master equation approach

    Full text link
    Based on our recent work on quantum transport [Li et al., Phys. Rev. B 71, 205304 (2005)], where the calculation of transport current by means of quantum master equation was presented, in this paper we show how an efficient calculation can be performed for the transport noise spectrum. Compared to the longstanding classical rate equation or the recently proposed quantum trajectory method, the approach presented in this paper combines their respective advantages, i.e., it enables us to tackle both the many-body Coulomb interactionand quantum coherence on equal footing and under a wide range of setup circumstances. The practical performance and advantages are illustrated by a number of examples, where besides the known results and new insights obtained in a transparent manner, we find that this alternative approach is much simpler than other well-known full quantum mechanical methods such as the Landauer-B\"uttiker scattering matrix theory and the nonequilibrium Green's function technique.Comment: 13 pages, 3 figures, submitted to PR

    Thermoelectric and Magnetothermoelectric Transport Measurements of Graphene

    Full text link
    The conductance and thermoelectric power (TEP) of graphene is simultaneously measured using microfabricated heater and thermometer electrodes. The sign of the TEP changes across the charge neutrality point as the majority carrier density switches from electron to hole. The gate dependent conductance and TEP exhibit a quantitative agreement with the semiclassical Mott relation. In the quantum Hall regime at high magnetic field, quantized thermopower and Nernst signals are observed and are also in agreement with the generalized Mott relation, except for strong deviations near the charge neutrality point

    Electrical transport through a single-electron transistor strongly coupled to an oscillator

    Full text link
    We investigate electrical transport through a single-electron transistor coupled to a nanomechanical oscillator. Using a combination of a master-equation approach and a numerical Monte Carlo method, we calculate the average current and the current noise in the strong-coupling regime, studying deviations from previously derived analytic results valid in the limit of weak-coupling. After generalizing the weak-coupling theory to enable the calculation of higher cumulants of the current, we use our numerical approach to study how the third cumulant is affected in the strong-coupling regime. In this case, we find an interesting crossover between a weak-coupling transport regime where the third cumulant heavily depends on the frequency of the oscillator to one where it becomes practically independent of this parameter. Finally, we study the spectrum of the transport noise and show that the two peaks found in the weak-coupling limit merge on increasing the coupling strength. Our calculation of the frequency-dependence of the noise also allows to describe how transport-induced damping of the mechanical oscillations is affected in the strong-coupling regime.Comment: 11 pages, 9 figure

    Influence of non-local exchange on RKKY interactions in III-V diluted magnetic semiconductors

    Full text link
    The RKKY interaction between substitutional Mn local moments in GaAs is both spin-direction-dependent and spatially anisotropic. In this Letter we address the strength of these anisotropies using a semi-phenomenological tight-binding model which treats the hybridization between Mn d-orbitals and As p-orbitals perturbatively and accounts realistically for the non-local exchange interaction between their spins. We show that exchange non-locality, valence-band spin-orbit coupling, and band-structure anisotropy all play a role in determining the strength of both effects. We use these results to estimate the degree of ground-state magnetization suppression due to frustrating interactions between randomly located Mn ions.Comment: 4 pages RevTeX, 2 figures included, v2: replacement because of font proble

    Non-equilibrium Entanglement and Noise in Coupled Qubits

    Full text link
    We study charge entanglement in two Coulomb-coupled double quantum dots in thermal equilibrium and under stationary non-equilibrium transport conditions. In the transport regime, the entanglement exhibits a clear switching threshold and various limits due to suppression of tunneling by Quantum Zeno localisation or by an interaction induced energy gap. We also calculate quantum noise spectra and discuss the inter-dot current correlation as an indicator of the entanglement in transport experiments.Comment: 4 pages, 4 figure
    corecore