34 research outputs found
Magnetic-flux-controlled giant Fano factor for the coherent tunneling through a parallel double-quantum-dot
We report our studies of zero-frequency shot noise in tunneling through a
parallel-coupled quantum dot interferometer by employing number-resolved
quantum rate equations. We show that the combination of quantum interference
effect between two pathways and strong Coulomb repulsion could result in a
giant Fano factor, which is controllable by tuning the enclosed magnetic flux.Comment: 11 pages, 2 figure
Resonant Cooper-Pair Tunneling: Counting Statistics and Frequency-Dependent Current Noise
We discuss the counting statistics and current noise associated with the
double Josephson quasiparticle resonance point in a superconducting single
electron transistor. The counting statistics are in general phase-dependent,
despite the fact that the average current has no dependence on phase. Focusing
on parameter regimes where the counting statistics have no phase-dependence, we
use a general relation first derived by MacDonald in 1948 to obtain the full
frequency-dependent shot noise directly from the counting statistics, without
any further approximations. We comment on problems posed by the
phase-dependence of the counting statistics for the finite-frequency noise.Comment: 13 pages, 2 figures; to appear in the proceedings of the NATO ASI
"New Directions in Mesoscopic Physics", Erice, 200
Measurement of finite-frequency current statistics in a single-electron transistor
Electron transport in nano-scale structures is strongly influenced by the
Coulomb interaction which gives rise to correlations in the stream of charges
and leaves clear fingerprints in the fluctuations of the electrical current. A
complete understanding of the underlying physical processes requires
measurements of the electrical fluctuations on all time and frequency scales,
but experiments have so far been restricted to fixed frequency ranges as
broadband detection of current fluctuations is an inherently difficult
experimental procedure. Here we demonstrate that the electrical fluctuations in
a single electron transistor (SET) can be accurately measured on all relevant
frequencies using a nearby quantum point contact for on-chip real-time
detection of the current pulses in the SET. We have directly measured the
frequency-dependent current statistics and hereby fully characterized the
fundamental tunneling processes in the SET. Our experiment paves the way for
future investigations of interaction and coherence induced correlation effects
in quantum transport.Comment: 7 pages, 3 figures, published in Nature Communications (open access
Cooling and heating with electron spins: Observation of the spin Peltier effect
The Peltier coefficient describes the amount of heat that is carried by an
electrical current when it passes through a material. Connecting two materials
with different Peltier coefficients causes a net heat flow towards or away from
the interface, resulting in cooling or heating at the interface - the Peltier
effect. Spintronics describes the transport of charge and angular momentum by
making use of separate spin-up and spin-down channels. Recently, the merger of
thermoelectricity with spintronics has given rise to a novel and rich research
field named spin caloritronics. Here, we report the first direct experimental
observation of refrigeration/heating driven by a spin current, a new spin
thermoelectric effect which we call the spin Peltier effect. The heat flow is
generated by the spin dependency of the Peltier coefficient inside the
ferromagnetic material. We explored the effect in a specifically designed spin
valve pillar structure by measuring the temperature using an electrically
isolated thermocouple. The difference in heat flow between the two magnetic
configurations leads to a change in temperature. With the help of 3-D finite
element modeling, we extracted permalloy spin Peltier coefficients in the range
of -0.9 to -1.3 mV. These results enable magnetic control of heat flow and
provide new functionality for future spintronic devices
Semi-Classical Theory of Magnetoresistance Anomalies in Ballistic Multi-Probe Conductors
Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe
Increasing frailty is associated with higher prevalence and reduced recognition of delirium in older hospitalised inpatients: results of a multi-centre study
Purpose Delirium is a neuropsychiatric disorder delineated by an acute change in cognition, attention, and consciousness. It is common, particularly in older adults, but poorly recognised. Frailty is the accumulation of deficits conferring an increased risk of adverse outcomes. We set out to determine how severity of frailty, as measured using the CFS, affected delirium rates, and recognition in hospitalised older people in the United Kingdom. Methods Adults over 65 years were included in an observational multi-centre audit across UK hospitals, two prospective rounds, and one retrospective note review. Clinical Frailty Scale (CFS), delirium status, and 30-day outcomes were recorded. Results The overall prevalence of delirium was 16.3% (483). Patients with delirium were more frail than patients without delirium (median CFS 6 vs 4). The risk of delirium was greater with increasing frailty [OR 2.9 (1.8–4.6) in CFS 4 vs 1–3; OR 12.4 (6.2–24.5) in CFS 8 vs 1–3]. Higher CFS was associated with reduced recognition of delirium (OR of 0.7 (0.3–1.9) in CFS 4 compared to 0.2 (0.1–0.7) in CFS 8). These risks were both independent of age and dementia. Conclusion We have demonstrated an incremental increase in risk of delirium with increasing frailty. This has important clinical implications, suggesting that frailty may provide a more nuanced measure of vulnerability to delirium and poor outcomes. However, the most frail patients are least likely to have their delirium diagnosed and there is a significant lack of research into the underlying pathophysiology of both of these common geriatric syndromes