2,005 research outputs found

    Mixing processes and hydraulic control in a highly stratified estuary

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2003This thesis utilizes field data from the Fraser River Estuary, a highly stratified system located in southwestern British Columbia, Canada, to investigate the nature of mixing processes in a highly stratified environment, and to extend two-dimensional hydraulic theory to a three dimensional environment. During the late ebb, a stationary front exists at the Fraser mouth. Although densimetric Froude numbers in the vicinity of the front are supercritical in a frame of reference parallel to the local streamlines, the front itself is oriented such that the value of the Froude number is equal to the critical value of unity when taken in a frame of reference perpendicular to the front. This observation presents a robust extension of established two-dimensional, two-layer hydraulic theory to thee dimensions, and implies similarity with trans-sonic flows, in that a Froude angle can be used to identify critical conditions in a manner similar to the Mach angle. Mixing processes were evaluated at the mouth during the late ebb using a control volume approach to isolate mean vertical entrainment processes from turbulent processes, and quantify the vertical turbulent salt and momentum fluxes. Observed turbulent dissipation rates are high, on the order of 10-3 m2s.3, with vertical entrainment velocities on the order of 2x10-3 m's'l. Mixing efficiencies, expressed as flux Richardson numbers, are confined within a range from 0.15 to 0.2, at gradient Richardson number values between 0.2 and 0.25. These results are consistent with previous laboratory studies, but represent energetic conditions that are several orders of magnitude higher. In the estuarine channel, the variability of mixing processes was investigated through the tidal cycle using control volume and overturn scale methods. Spatially, mixing was observed to be more intense near a width constriction on the order of25%. Temporally, more dominant mixing was observed during ebbs, due to increases in both vertical shear and stratification. Mixing is active and important throughout the tidal cycle, and was found to be the dominant process responsible for removing salt from the estuarine channel during the ebb.This research was funded by Office of Naval Research grants N000-14-97-10134 and N000-14-97-10566, National Science Foundation grant OCE-9906787, a National Science Foundation graduate fellowship, and the WHOI Academic Programs Office

    Increasing Individuals’ Economic Stability through Massachusetts’ Career and Technical Education

    Get PDF
    High-school based career and technical education (CTE) programs continue to grow, fueled by labor market demand and federal funding. Amid concerns over declining rates of economic mobility and stagnating earnings for low-wage workers, the academic landscape in America’s secondary schools now places extensive focus on workforce preparation as part of the curriculum. Nationally, CTE is the most popular type of elective taken by high school students, with roughly 80 percent of high school students taking at least one course. Using data from Massachusetts, researchers from the CTEx consortium estimated that students who participated in specialized CTE programs in high school had better attendance rates, were more likely to graduate from high school, were more likely to enroll in a two-year college, and earned more money in the seven years after leaving high school.https://scholarworks.gsu.edu/gpl_reports/1037/thumbnail.jp

    Increasing Individuals’ Economic Stability through Massachusetts’ Career and Technical Education

    Get PDF
    High-school based career and technical education (CTE) programs continue to grow, fueled by labor market demand and federal funding. Amid concerns over declining rates of economic mobility and stagnating earnings for low-wage workers, the academic landscape in America’s secondary schools now places extensive focus on workforce preparation as part of the curriculum. Nationally, CTE is the most popular type of elective taken by high school students, with roughly 80 percent of high school students taking at least one course. Using data from Massachusetts, researchers from the CTEx consortium estimated that students who participated in specialized CTE programs in high school had better attendance rates, were more likely to graduate from high school, were more likely to enroll in a two-year college, and earned more money in the seven years after leaving high school

    Wind Effects on Near- and Midfield Mixing in Tidally Pulsed River Plumes

    Get PDF
    River plumes transport and mix land-based tracers into the ocean. In tidally pulsed river plumes, wind effects have long been considered negligible in modulating interfacial mixing in the energetic nearfield region. This research tests the influence of variable, realistic winds on mixing in the interior plume. A numerical model of the Merrimack River plume-shelf system is utilized, with an application of the salinity variance approach employed to identify spatial and temporal variation in advection, straining, and dissipation (mixing) of vertical salinity variance (stratification). Results indicate that moderate wind stresses (∼0.5 Pa) with a northward component countering the downcoast rotation of the plume are most effective at decreasing stratification in the domain relative to other wind conditions. Northward winds advect plume and ambient shelf stratification offshore, allowing shelf water salinity to increase in the nearshore, which strengthens the density gradient at the plume base. Straining in the plume increases with winds enhancing offshore-directed surface velocities, leading to increased shear at the plume base. Increased straining and larger density gradients at the plume base enhance variance dissipation in the near- and midfield plume, and dissipation remains enhanced if the shelf is clear of residual stratification. The smaller spatial and temporal scales of the Merrimack plume allow the mechanisms to occur at tidal time scales in direct response to instantaneous winds. This is the first study to show tidal time scale wind-induced straining and advection as controlling factors on near- and midfield mixing rates in river plumes under realistic winds

    Salt wedge dynamics lead to enhanced sediment trapping within side embayments in high-energy estuaries

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 2226–2242, doi:10.1002/2016JC012595.Off-river coves and embayments provide accommodation space for sediment accumulation, particularly for sandy estuaries where high energy in the main channel prevents significant long-term storage of fine-grained material. Seasonal sediment inputs to Hamburg Cove in the Connecticut River estuary (USA) were monitored to understand the timing and mechanisms for sediment storage there. Unlike in freshwater tidal coves, sediment was primarily trapped here during periods of low discharge, when the salinity intrusion extended upriver to the cove entrance. During periods of low discharge and high sediment accumulation, deposited sediment displayed geochemical signatures consistent with a marine source. Numerical simulations reveal that low discharge conditions provide several important characteristics that maximize sediment trapping. First, these conditions allow the estuarine turbidity maximum (ETM) to be located in the vicinity of the cove entrance, which increases sediment concentrations during flood tide. Second, the saltier water in the main channel can enter the cove as a density current, enhancing near-bed velocities and resuspending sediment, providing an efficient delivery mechanism. Finally, higher salinity water accumulates in the deep basin of the cove, creating a stratified region that becomes decoupled from ebb currents, promoting retention of sediment in the cove. This process of estuarine-enhanced sediment accumulation in off-river coves will likely extend upriver during future sea level rise.NSF Grant Numbers: EAR-1148244 , OCE-09264272017-09-1

    Freshwater Composition and Connectivity of the Connecticut River Plume During Ambient Flood Tides

    Get PDF
    The Connecticut River plume interacts with the strong tidal currents of the ambient receiving waters in eastern Long Island Sound. The plume formed during ambient flood tides is studied as an example of tidal river plumes entering into energetic ambient tidal environments in estuaries or continental shelves. Conservative passive freshwater tracers within a high-resolution nested hydrodynamic model are applied to determine how source waters from different parts of the tidal cycle contribute to plume composition and interact with bounding plume fronts. The connection to source waters can be cut off only under low-discharge conditions, when tides reverse surface flow through the mouth after max ambient flood. Upstream plume extent is limited because ambient tidal currents arrest the opposing plume propagation, as the tidal internal Froude number exceeds one. The downstream extent of the tidal plume always is within 20 km from the mouth, which is less than twice the ambient tidal excursion. Freshwaters in the river during the preceding ambient ebb are the oldest found in the new flood plume. Connectivity with source waters and plume fronts exhibits a strong upstream-to- downstream asymmetry. The arrested upstream front has high connectivity, as all freshwaters exiting the mouth immediately interact with this boundary. The downstream plume front has the lowest overall connectivity, as interaction is limited to the oldest waters since younger interior waters do not overtake this front. The offshore front and inshore boundary exhibit a downstream progression from younger to older waters and decreasing overall connectivity with source waters. Plume-averaged freshwater tracer concentrations and variances both exhibit an initial growth period followed by a longer decay period for the remainder of the tidal period. The plume-averaged tracer variance is increased by mouth inputs, decreased by entrainment, and destroyed by internal mixing. Peak entrainment velocities for younger waters are higher than values for older waters, indicating stronger entrainment closer to the mouth. Entrainment and mixing time scales (1–4 h at max ambient flood) are both shorter than half a tidal period, indicating entrainment and mixing are vigorous enough to rapidly diminish tracer variance within the plume

    Double-Occupancy Errors, Adiabaticity, and Entanglement of Spin-Qubits in Quantum Dots

    Get PDF
    Quantum gates that temporarily increase singlet-triplet splitting in order to swap electronic spins in coupled quantum dots, lead inevitably to a finite double-occupancy probability for both dots. By solving the time-dependent Schr\"odinger equation for a coupled dot model, we demonstrate that this does not necessarily lead to quantum computation errors. Instead, the coupled dot ground state evolves quasi-adiabatically for typical system parameters so that the double-occupancy probability at the completion of swapping is negligibly small. We introduce a measure of entanglement which explicitly takes into account the possibilty of double occupancies and provides a necessary and sufficient criterion for entangled states.Comment: 9 pages, 4 figures include
    • …
    corecore