4 research outputs found

    Giant Pickering droplets: effect of nanoparticle size and morphology on stability

    Get PDF
    The interaction between a pair of millimeter-sized nanoparticle-stabilized n-dodecane droplets was analyzed by high-speed video camera. The droplets were grown in the presence of either poly(glycerol monomethacrylate)-poly(benzyl methacrylate) (PGMA-PBzMA) diblock copolymer spheres or poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate)-poly(benzyl methacrylate) (PGMA-PHPMA-PBzMA) triblock copolymer worms prepared by polymerization-induced self-assembly (PISA). The effect of nanoparticle morphology on droplet coalescence was analyzed by comparing 22 nm spheres to highly anisotropic worms with a mean worm width of 26 nm and comparable particle contact angle. Both morphologies lowered the interfacial tension, providing direct evidence for nanoparticle adsorption at the oil-water interface. At 0.03 % w/v copolymer, at least 90 seconds was required to stabilize the n-dodecane droplets in the presence of the worms, whereas no ageing was required to produce stable droplets when using the spheres, suggesting faster diffusion of the latter to the surface of the droplets. The enhanced stability of the sphere-coated droplets is consistent with the higher capillary pressure in this system as the almost planar interfaces approach. However, the more strongly adsorbing worms ultimately also confer stability. At lower copolymer concentrations (≤ 0.01% w/v) worm adsorption promoted droplet stability, whereas the spheres were unable to stabilize droplets even after longer ageing times. The effect of mean sphere diameter on droplet stability was also assessed while maintaining an approximately constant particle contact angle. Small spheres of either 22 nm or 41 nm stabilized n-dodecane droplets, whereas larger spheres of either 60 or 91 nm were unable to prevent coalescence when the two droplets were brought into contact. These observations are consistent with the greater capillary pressure stabilizing the oil-water interfaces coated with the smaller spheres. Addition of an oil-soluble polymeric diisocyanate cross-linker to either the 60 nm or the 91 nm spheres produced highly stable colloidosomes, thus confirming adsorption of these nanoparticles

    Bespoke Diblock Copolymer Nanoparticles Enable Production of Relatively Stable Oil-in-Water Pickering Nanoemulsions

    Get PDF
    Sterically-stabilized diblock copolymer nanoparticles with an intensity-average diameter of 25 nm are prepared in the form of a concentrated aqueous dispersion using polymerization-induced self-assembly (PISA). Addition of n-dodecane followed by high-shear homogenization produces n-dodecane-in-water Pickering macroemulsions of 22-46 µm diameter. If the nanoparticles are present in sufficient excess, subsequent processing using a high-pressure microfluidizer leads to formation of Pickering nanoemulsions with a mean droplet diameter below 200 nm. The size of these Pickering nanoemulsions can be tuned by systematically varying the nanoparticle concentration, applied pressure, the number of passes and the oil volume fraction. High internal phase emulsions can also be achieved by increasing the n-dodecane volume fraction up to 0.80. TEM studies of (dried) n-dodecane droplets confirm the presence of intact nanoparticles and suggest a relatively high surface coverage, which is consistent with model packing calculations based on radius ratios. Such Pickering nanoemulsions proved to be remarkably stable with respect to Ostwald ripening, with no significant change in the mean DLS droplet diameter after storage for approximately four months at 20 °C

    Targeting triple-negative breast cancer cells using Dengue virus-mimicking pH-responsive framboidal triblock copolymer vesicles

    Get PDF
    It is well-known that the Dengue fever virus undergoes a distinct morphological transition from topologically smooth particles to ‘bumpy’ particle on increasing the temperature from that of the mosquito carrier (28 °C) to that of the human host (37 °C). This virus also possesses pH-sensitive surface domains that undergo conformational changes during infection which facilitates exit from the endosomes. Herein we take a bio-inspired approach to design synthetic Dengue virus-mimicking nanoparticles to target triple-negative (TN) breast cancer cells that overexpress SR-B1 scavenger receptors. Thus, sterile pH-responsive methacrylic ABC triblock copolymer vesicles were prepared in aqueous solution via polymerization-induced self-assembly. Microphase separation between two enthalpically-incompatible hydrophobic membrane-forming blocks produced a well-defined framboidal morphology, with surface globules of ∼28 nm diameter protruding from the membrane. The hydrophilic stabilizer block comprises 97% hydroxyl-functionalized chains and 3% phosphorylcholine-functionalized chains, with the latter being critical for selective intracellular uptake. These framboidal vesicles remain intact at neutral pH but become swollen and cationic at pH 5–6 because the tertiary amine residues in the hydrophobic C block become protonated. We demonstrate that such nanoparticles enable selective targeting of TN breast cancer cells. This is because such malignant cells overexpress SR-B1 receptors for naturally-occurring phospholipids and hence take up the phosphorylcholine-decorated framboidal vesicles preferentially. In contrast, negligible cell uptake is observed over the same time period for both human dermal fibroblasts and normal breast cancer cells that minimally express the SR-B1 receptor. Moreover, we show that genetic material within such pH-responsive framboidal vesicles can be efficiently delivered to the cell nuclei while maintaining high cell viability
    corecore