286 research outputs found

    Phenex: Ontological Annotation of Phenotypic Diversity

    Get PDF
    Phenex is a platform-independent desktop application designed to facilitate efficient and consistent annotation of phenotypic variation using Entity-Quality syntax, drawing on terms from community ontologies for anatomical entities, phenotypic qualities, and taxonomic names. Despite the centrality of the phenotype to so much of biology, traditions for communicating information about phenotypes are idiosyncratic to different disciplines. Phenotypes seem to elude standardized descriptions due to the variety of traits that compose them and the difficulty of capturing the complex forms and subtle differences among organisms that we can readily observe. Consequently, phenotypes are refractory to attempts at data integration that would allow computational analyses across studies and study systems. Phenex addresses this problem by allowing scientists to employ standard ontologies and syntax to link computable phenotype annotations to evolutionary character matrices, as well as to link taxa and specimens to ontological identifiers. Ontologies have become a foundational technology for establishing shared semantics, and, more generally, for capturing and computing with biological knowledge

    CARO: The Common Anatomy Reference Ontology

    Get PDF
    The Common Anatomy Reference Ontology (CARO) is being developed to facilitate interoperability between existing anatomy ontologies for different species, and will provide a template for building new anatomy ontologies. CARO has a structural axis of classification based on the top-level nodes of the Foundational Model of Anatomy. CARO will complement the developmental process sub-ontology of the GO Biological Process ontology, using it to ensure the coherent treatment of developmental stages, and to provide a common framework for the model organism communities to classify developmental structures. Definitions for the types and relationships are being generated by a consortium of investigators from diverse backgrounds to ensure applicability to all organisms. CARO will support the coordination of cross-species ontologies at all levels of anatomical granularity by cross-referencing types within the cell type ontology (CL) and the Gene Ontology (GO) Cellular Component ontology. A complete cross-species CARO could be utilized in other ontologies for cross-product generation

    CARO: The Common Anatomy Reference Ontology

    Get PDF
    The Common Anatomy Reference Ontology (CARO) is being developed to facilitate interoperability between existing anatomy ontologies for different species, and will provide a template for building new anatomy ontologies. CARO has a structural axis of classification based on the top-level nodes of the Foundational Model of Anatomy. CARO will complement the developmental process sub-ontology of the GO Biological Process ontology, using it to ensure the coherent treatment of developmental stages, and to provide a common framework for the model organism communities to classify developmental structures. Definitions for the types and relationships are being generated by a consortium of investigators from diverse backgrounds to ensure applicability to all organisms. CARO will support the coordination of cross-species ontologies at all levels of anatomical granularity by cross-referencing types within the cell type ontology (CL) and the Gene Ontology (GO) Cellular Component ontology. A complete cross-species CARO could be utilized in other ontologies for cross-product generation

    Re-imagining the Borders of US Security after 9/11: Securitisation, Risk, and the Creation of the Department of Homeland Security

    Get PDF
    The articulation of international and transnational terrorism as a key issue in US security policy, as a result of the 9/11 attacks, has not only led to a policy rethink, it has also included a bureaucratic shift within the US, showing a re-thinking of the role of borders within US security policy. Drawing substantively on the 'securitisation' approach to security studies, the article analyses the discourse of US security in order to examine the founding of the Department of Homeland Security, noting that its mission provides a new way of conceptualising 'borders' for US national security. The securitisation of terrorism is, therefore, not only represented by marking terrorism as a security issue, it is also solidified in the organisation of security policy-making within the US state. As such, the impact of a 'war on terror' provides an important moment for analysing the re-articulation of what security is in the US, and, in theoretical terms, for reaffirming the importance of a relationship between the production of threat and the institutionalisation of threat response. © 2007 Taylor & Francis

    vHOG, a multispecies vertebrate ontology of homologous organs groups

    Get PDF
    Motivation: Most anatomical ontologies are species-specific, whereas a framework for comparative studies is needed. We describe the vertebrate Homologous Organs Groups ontology, vHOG, used to compare expression patterns between species

    The Teleost Anatomy Ontology: Anatomical Representation for the Genomics Age

    Get PDF
    The rich knowledge of morphological variation among organisms reported in the systematic literature has remained in free-text format, impractical for use in large-scale synthetic phylogenetic work. This noncomputable format has also precluded linkage to the large knowledgebase of genomic, genetic, developmental, and phenotype data in model organism databases. We have undertaken an effort to prototype a curated, ontology-based evolutionary morphology database that maps to these genetic databases (http://kb.phenoscape.org) to facilitate investigation into the mechanistic basis and evolution of phenotypic diversity. Among the first requirements in establishing this database was the development of a multispecies anatomy ontology with the goal of capturing anatomical data in a systematic and computable manner. An ontology is a formal representation of a set of concepts with defined relationships between those concepts. Multispecies anatomy ontologies in particular are an efficient way to represent the diversity of morphological structures in a clade of organisms, but they present challenges in their development relative to single-species anatomy ontologies. Here, we describe the Teleost Anatomy Ontology (TAO), a multispecies anatomy ontology for teleost fishes derived from the Zebrafish Anatomical Ontology (ZFA) for the purpose of annotating varying morphological features across species. To facilitate interoperability with other anatomy ontologies, TAO uses the Common Anatomy Reference Ontology as a template for its upper level nodes, and TAO and ZFA are synchronized, with zebrafish terms specified as subtypes of teleost terms. We found that the details of ontology architecture have ramifications for querying, and we present general challenges in developing a multispecies anatomy ontology, including refinement of definitions, taxon-specific relationships among terms, and representation of taxonomically variable developmental pathways.This work was supported by the National Science Foundation (NSF DBI 0641025), National Institutes of Health (HG002659), and the National Evolutionary Synthesis Center (NSF EF-0423641)

    Evolutionary Characters, Phenotypes and Ontologies: Curating Data from the Systematic Biology Literature

    Get PDF
    BACKGROUND: The wealth of phenotypic descriptions documented in the published articles, monographs, and dissertations of phylogenetic systematics is traditionally reported in a free-text format, and it is therefore largely inaccessible for linkage to biological databases for genetics, development, and phenotypes, and difficult to manage for large-scale integrative work. The Phenoscape project aims to represent these complex and detailed descriptions with rich and formal semantics that are amenable to computation and integration with phenotype data from other fields of biology. This entails reconceptualizing the traditional free-text characters into the computable Entity-Quality (EQ) formalism using ontologies. METHODOLOGY/PRINCIPAL FINDINGS: We used ontologies and the EQ formalism to curate a collection of 47 phylogenetic studies on ostariophysan fishes (including catfishes, characins, minnows, knifefishes) and their relatives with the goal of integrating these complex phenotype descriptions with information from an existing model organism database (zebrafish, http://zfin.org). We developed a curation workflow for the collection of character, taxonomic and specimen data from these publications. A total of 4,617 phenotypic characters (10,512 states) for 3,449 taxa, primarily species, were curated into EQ formalism (for a total of 12,861 EQ statements) using anatomical and taxonomic terms from teleost-specific ontologies (Teleost Anatomy Ontology and Teleost Taxonomy Ontology) in combination with terms from a quality ontology (Phenotype and Trait Ontology). Standards and guidelines for consistently and accurately representing phenotypes were developed in response to the challenges that were evident from two annotation experiments and from feedback from curators. CONCLUSIONS/SIGNIFICANCE: The challenges we encountered and many of the curation standards and methods for improving consistency that we developed are generally applicable to any effort to represent phenotypes using ontologies. This is because an ontological representation of the detailed variations in phenotype, whether between mutant or wildtype, among individual humans, or across the diversity of species, requires a process by which a precise combination of terms from domain ontologies are selected and organized according to logical relations. The efficiencies that we have developed in this process will be useful for any attempt to annotate complex phenotypic descriptions using ontologies. We also discuss some ramifications of EQ representation for the domain of systematics

    500,000 fish phenotypes: The new informatics landscape for evolutionary and developmental biology of the vertebrate skeleton: Fish phenotypes

    Get PDF
    The rich phenotypic diversity that characterizes the vertebrate skeleton results from evolutionary changes in regulation of genes that drive development. Although relatively little is known about the genes that underlie the skeletal variation among fish species, significant knowledge of genetics and development is available for zebrafish. Because developmental processes are highly conserved, this knowledge can be leveraged for understanding the evolution of skeletal diversity. We developed the Phenoscape Knowledgebase (KB; http://kb.phenoscape.org) to yield testable hypotheses of candidate genes involved in skeletal evolution. We developed a community anatomy ontology for fishes and ontology-based methods to represent complex free-text character descriptions of species in a computable format. With these tools, we populated the KB with comparative morphological data from the literature on over 2500 teleost fishes (mainly Ostariophysi) resulting in over 500,000 taxon phenotype annotations. The KB integrates these data with similarly structured phenotype data from zebrafish genes (http://zfin.org). Using ontology-based reasoning, candidate genes can be inferred for the phenotypes that vary across taxa, thereby uniting genetic and phenotypic data to formulate evo-devo hypotheses. The morphological data in the KB can be browsed, sorted, and aggregated in ways that provide unprecedented possibilities for data mining and discovery

    Phenoscape: Identifying Candidate Genes for Evolutionary Phenotypes

    Get PDF
    Phenotypes resulting from mutations in genetic model organisms can help reveal candidate genes for evolutionarily important phenotypic changes in related taxa. Although testing candidate gene hypotheses experimentally in nonmodel organisms is typically difficult, ontology-driven information systems can help generate testable hypotheses about developmental processes in experimentally tractable organisms. Here, we tested candidate gene hypotheses suggested by expert use of the Phenoscape Knowledgebase, specifically looking for genes that are candidates responsible for evolutionarily interesting phenotypes in the ostariophysan fishes that bear resemblance to mutant phenotypes in zebrafish. For this, we searched ZFIN for genetic perturbations that result in either loss of basihyal element or loss of scales phenotypes, because these are the ancestral phenotypes observed in catfishes (Siluriformes). We tested the identified candidate genes by examining their endogenous expression patterns in the channel catfish, Ictalurus punctatus. The experimental results were consistent with the hypotheses that these features evolved through disruption in developmental pathways at, or upstream of, brpf1 and eda/edar for the ancestral losses of basihyal element and scales, respectively. These results demonstrate that ontological annotations of the phenotypic effects of genetic alterations in model organisms, when aggregated within a knowledgebase, can be used effectively to generate testable, and useful, hypotheses about evolutionary changes in morphology
    corecore