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Summary

The rich phenotypic diversity that characterizes the vertebrate
skeleton results from evolutionary changes in regulation of
genes that drive development. Although relatively little is
known about the genes that underlie the skeletal variation

among fish species, significant knowledge of genetics and
development is available for zebrafish. Because developmental
processes are highly conserved, this knowledge can be leveraged

for understanding the evolution of skeletal diversity. We
developed the Phenoscape Knowledgebase (KB; http://kb.
phenoscape.org) to yield testable hypotheses of candidate genes

involved in skeletal evolution. We developed a community
anatomy ontology for fishes and ontology-based methods to
represent complex free-text character descriptions of species in

a computable format. With these tools, we populated the KB
with comparative morphological data from the literature on
over 2500 teleost fishes (mainly Ostariophysi) resulting in over
500,000 taxon phenotype annotations. The KB integrates these

data with similarly structured phenotype data from zebrafish
genes (http://zfin.org). Using ontology-based reasoning, can-
didate genes can be inferred for the phenotypes that vary across

taxa, thereby uniting genetic and phenotypic data to formulate
evo-devo hypotheses. The morphological data in the KB can be
browsed, sorted, and aggregated in ways that provide unprec-

edented possibilities for data mining and discovery.

Introduction

In response to the enormous challenge presented by the deluge
of new data, biologists have embarked on a new voyage of
exploration and discovery using bioinformatics. Although the

emphasis has been on genomic data (Pennisi, 2011), there is
growing recognition that a corresponding sea of phenomic
data must also be organized and made computable in relation

to genomic data. Phenotypes are the observable features of an
organism such as anatomy, behavior, and the development of
these traits. Mapping the genome to the phenome of an

organism, and integrating such data with evolutionary change-
holds a high potential for scientific discovery if the challenges
of data organization and access can be overcome. Significant
efforts have been mounted to integrate genetic and phenotypic

information in evolutionary biology (Mabee et al., 2007a;
Dahdul et al., 2010b), biodiversity (Deans et al., 2012),
biomedicine (Washington et al., 2009), and agriculture (Facc-

ioli et al., 2009).

Fish skeletal biology provides an ideal testing ground for
data integration, given its rich history in comparative anatomy
(Cuvier and Valenciènnes, 1846), phylogenetic systematics
(Williams and Ebach, 2008), and developmental biology

(Grunwald and Eisen, 2002). The purpose of this paper is to
describe the informatics approach initiated by the Phenoscape
project (Mabee et al., 2007a; Dahdul et al., 2010a,b) that has

the potential to transform the way development and evolution
of the fish skeleton are studied and understood.

Two problems in evo-devo

Biologists working at the intersection of the fields of evolution

and development face two central problems when attempting
to integrate data from both fields: (i) the difficulty for an expert
in the comparative anatomy and evolution of a taxon to
discover candidate genes for evolutionary phenotypes, and (ii)

the difficulty for an expert in the molecular development and
genetics of a model organism to recover the taxonomic
distribution of a particular feature across the tremendous

breadth of species.
An example of first problem, the difficulty of candidate gene

discovery, is illustrated by numerous publications describing

the comparative skeletal anatomy of fishes. For example,
Wiley and Johnson (2010) collected and reviewed morpholog-
ical synapomorphies, most of them skeletal features, which are
the basis for recognizing 118 major groups of teleost fishes.

The first six characters described are some of the synapomor-
phies for teleosts and involve aspects of the quadrate, maxilla,
coronoid bones, articular, neural spine of preural centrum 1,

and the pectoral propterygium. Although quite laborious, a
thorough literature search would yield candidate genes that
have phenotypic effects on the quadrate and maxilla in

zebrafish, as would a search for these bones in the ZFIN
database (http://zfin.org). No genes, however, that have a
phenotypic effect on the coronoid bones, articular, neural

spine of preural centrum 1, or the pectoral propterygium, can
be retrieved currently from these sources.

The second problem, i.e., the difficulty of recovering the
distribution of a particular feature for a set of taxa, can be

generally illustrated by most aspects of the fish skeleton. Of
interest to a developmental geneticist might be to identify the
variation across fishes of a skeletal phenotype for a particular

gene, such as the brpf1 gene that results in the loss of a basihyal
cartilage when mutant in zebrafish (Laue et al., 2008). Phenotypic
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data on the skeletal variation of fishes, however, are recorded
in an enormous bulk of free-text based literature such as

books, monographs, unpublished theses, dissertations, phylo-
genetic studies, species descriptions, and taxonomic treat-
ments. Although this literature is being digitized, it is still not

organized or accessible for finding, aggregating, or comparing
phenotypic data across studies. Even fish skeletal data that are
available in databases, such as FishBase (Froese and Pauly,
2011), are not easily accessible for effective browsing, com-

parison, or analysis. From an Internet search of �basihyal lost
absent fish�, one might patch together that the basihyal was
lost possibly twice in batoid fishes (Miyake and McEachran,

1991), is absent in Pterygotriglini (Richards and Jones, 2002),
etc. But it is not immediately obvious from the 5000+ search
results that all Siluriformes (catfishes) share the derived loss of

the basihyal element (Arratia and Schultze, 1990; de Pinna,
1993). Moreover, it is not possible to collect a hierarchically
ordered list of fishes with associated presence or absence of
basihyal element, and it is not possible to visualize the

distribution of this feature on a phylogenetic tree for fishes.
For even the most expert fish anatomist, recovering data on
the variation in a particular feature across fishes is extremely

difficult, and for students, or for researchers from other
disciplines, it is completely unreachable.

The Phenoscape project, ontologies, and phenotypes

The Phenoscape project was launched in 2007 to enable large-

scale knowledge discovery in the field of evolutionary devel-
opmental biology. The aim was to solve the two fundamental
problems (above) by semantically integrating data on pheno-
typic variation among species with the phenotypic effects of

genetic variation in model organisms using shared ontologies.
To date, the project has produced a proof-of-concept knowl-
edgebase with more than 5 00 000 phenotype assertions from

the ichthyological literature.
Information retrieval from free-text is difficult (Washington

et al., 2009). Simple text matching will not recognize that the

following four phenotypes ⁄ character states refer to the same
bone: �lacrymal bone, flat� (Mayden, 1989), �lacrimal, small,
flat� (Grande and Poyato-Ariza, 1999), �first infraorbital
(lachrymal) shape, flattened� (Kailola, 2004), �suborbital bone
is very broad� (Cuvier, 1840). However, if these text strings are
annotated with the ontology identifier TAO:0000223, which
corresponds to infraorbital 1 and its synonyms (lacrymal,

lacrimal, first infraorbital, suborbital), and uniquely references
this concept as the first or anterior-most dermal bone that is
located adjacent to the orbit in fishes, these differently

described phenotypes can be aggregated. Moreover, if both
infraorbital 1 and infraorbital 4 are related in an ontology as
types of infraorbitals, parts of the infraorbital series, and types

of dermal bones, they can be returned in queries for the term
�infraorbital�, �infraorbital series�, or �dermal bone�. Thus, free
text terms that are synonymized and related in an ontology can
be computationally aggregated and computed in ways that are

not possible with free text alone.
An ontology can thus function to relate concepts (terms) in

user-defined ways. It is a hierarchical set of well-defined terms

and the logical relationships that hold between them. It
represents the knowledge of a discipline, in a form that can be
understood by both humans and machines. Ontologies are

used for standardizing terminology within disciplines and for
clarifying and improving communication across domains.
Model organism communities have led successful efforts to

standardize gene function descriptions (Gene Ontology, Blake
and Harris, 2008) and to standardize the names of anatomical

structures in model organism specific ontologies, e.g., the
zebrafish anatomy ontology (Sprague et al., 2001). More
recently, multispecies anatomy ontologies have been developed

by the evolutionary community, including one for fishes, the
Teleost Anatomy Ontology (Dahdul et al., 2010b) and one for
hymenopterans (Yoder et al., 2010). As recently demonstrated
by the mouse, fly, and zebrafish databases (Washington et al.,

2009), ontologies support interoperability of descriptive data
across databases, because, in contrast to natural language,
ontologies allow computer processing of the semantic infor-

mation buried in textual descriptions at a large scale.
The model organism community pioneered an ontology-

based approach to represent anatomical phenotypes for the

purpose of integrating mutant phenotypes across model
organisms (Washington et al., 2009; Mungall et al., 2007).
This Entity–Quality (EQ) syntax decomposes phenotype
statements into three basic components: a phenotypic quality

(Q), such as a �flattened� shape; the entity that is its bearer (E),
such as �infraorbital bone�; and the organismal entity that
exhibits the phenotype, in the case of model organisms, the

genotype. Phenotypes in EQ format consist of terms from
ontologies for each component, and well-defined relationships
(is a, part of, and develops from) that render them formal logic

expressions (Burger et al., 2008).
The Phenoscape project adopted this ontology-based

approach to represent evolutionary phenotypes described as

characters and character states in the systematics literature
(Mabee et al., 2007b; Balhoff et al., 2010; Dahdul et al.,
2010a,b). Using anatomical and taxonomic terms from
teleost-specific ontologies (Teleost Anatomy Ontology and

Teleost Taxonomy Ontology) in combination with terms from
a taxon-neutral quality ontology (Phenotype and Trait Ontol-
ogy), we used the EQ formalism to curate all characters and

states described in over 50 phylogenetic studies (published
between 1981 and 2008) of teleost fishes, primarily ostario-
physans but also including clupeomorphs and some euteleosts

(percomorphs and salmoniforms). These studies included peer-
reviewed publications, book chapters, dissertations, and a
M.S. thesis (Dahdul et al., 2010a). We developed the Phenex
annotation software (Balhoff et al., 2010) to support a

workflow for ontology-based annotation of data from these
publications. Specifically, Phenex imports character matrices,
loads user-selected anatomy and quality ontologies for repre-

sentation of phenotypes, and facilitates selection of taxon
identifiers from a taxonomic ontology, as well as museum
collection IDs for recording specimens (Balhoff et al., 2010).

As in other areas, the biocuration process (Howe et al., 2008)
of annotating text, here phenotype descriptions, with ontology
terms is primarily manual, although efforts to partially

automate the work flow are underway (e.g., Dowell et al.,
2009). A total of 4 820 phenotypic characters for 2 506 fish
taxa, primarily species, have been curated into EQ formalism
to date, resulting in 560 485 skeletal and other anatomical

phenotype annotations. In the Phenoscape KB these taxon
phenotype annotations are combined with 26 934 phenotype
annotations for 4 307 zebrafish genes1. The Phenoscape KB

supports browsing, searching, and analyzing gene and pheno-
type annotations together. It also allows users to take

1Numbers of phenotypes, taxa, and genes annotated change as new
data are curated into the ZFIN and Phenoscape KB.
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advantage of the relations between ontology terms, such as
subtype and parthood relations. For example, a search for

�paired fin� will also retrieve data that are tagged with the
logical subtypes �pectoral fin� or �pelvic fin�. Other logical
relations, such as develops from, allow more sophisticated

searching. A paired fin develops from a fin bud, and thus there
is the potential to recover genetic and phenotypic data for fin
buds from a search on paired fins. From the example above
(Wiley and Johnson, 2010), candidate genes associated with

the parent terms of coronoid bones, articular, neural spine of
preural centrum 1, and pectoral propterygium can be pro-
posed. The pectoral propterygium, for example, is part of the

pectoral fin and as such is associated with all 153 genes with
mutant pectoral fin (including parts) phenotypes in zebrafish.

5 00 000 hypotheses: candidate genes, candidate taxa

The wide variety of skeletal phenotypes among fishes are
integrated across studies and with genes in the Phenoscape

KB, enabling the search for candidate genes underlying
evolutionary phenotypes and the query for distributions of
phenotypes across taxa in gene expression and function. The

shared ontologies integrate these disparate data and yield a
rich set of testable hypotheses. Each of the 5 60 485 fish taxon
phenotype annotations is associated with one or more genes in

the KB, and thus thousands of evolutionary transitions in
phenotype and gene associations may be hypothesized. The
nine examples below illustrate common evolutionary changes

in fish skeletal phenotypes for which candidate genes may be
returned from queries (i.e., questions addressed via a software
interface) to the Phenoscape KB. The numbers of phenotypes,
taxa, and genes that are reported below will change as new

data from the literature are curated into the ZFIN and
Phenoscape KB (data below from 23 November 2011).

Gill rakers, absent. A query to the Phenoscape KB for taxa

that lack gill rakers on one or more gill arches returns 101 taxa,
including Anguilliforms, and some Characiformes, Silurifor-
mes, and Tetraodontiformes. Gill rakers are absent from all gill
arches of Anguilliforms (Nelson, 2006). In zebrafish, muta-

tionsin two genes, eda and edar, result in the absence of gill
rakers (Harris et al., 2008). One could then ask, for example,
�Are gill rakers absent in anguilliform eels because of changes

in eda, edar, or regulation of the eda signaling pathway?�

Lateral line, variation. A Phenoscape KB query for taxa that
vary in some quality of their lateral line, i.e., a change in
position, shape, completeness, etc., yields 815 taxa in 18 teleost

orders, including, e.g., Minytrema melanops (the spotted
sucker). Alteration in the function of seven genes in zebrafish,
erbb3b, eya1 (Whitfield et al., 1996), lef1 (McGraw et al.,

2011), pcsk5a (Chitramuthu et al., 2010), rog, sox10, and
unm_m583 (Driever et al., 1996) results in abnormal lateral line
phenotypes. The morpholino-based translation inhibition in

pcsk5a, for example, disrupts formation of the lateral line,
resulting in reduced or complete absence of posterior lateral
line neuromasts (Chitramuthu et al., 2010). This query moti-

vates the hypothesis that reduced length of the posterior lateral
line in Minytrema (Smith, 1992) is due to an alteration in
function of pcsk5a (or any of the other genes above).

Caudal fin, absent. A caudal fin is primitively present in teleost

fishes; lost only a few times during evolution. A query in

Phenoscape KB for absence of a caudal fin returns 28 taxa,
including 25 species of gymnotiform knifefishes (Albert, 2001)

and three tetraodontiform species (Santini and Tyler, 2002).
The loss of the caudal fin in the familiar Mola mola has been
confirmed through a detailed developmental morphological

study (Johnson and Britz, 2005). Five genes, edar (van Eeden
et al., 1996), lef1 (McGraw et al., 2011) smc3, tll 1 (Lele et al.,
2001) and yap1 (Jiang et al., 2009), are associated with caudal
fin loss in zebrafish. One might investigate, then, whether the

loss of the caudal fin in Mola mola is related to changes in
regulation of yap1 (or any of the other genes above).

Ceratobranchial five teeth, absent. A query for taxa that vary

in the presence of teeth on their fifth ceratobranchial element
results in 43 taxa, including some Characiformes, Gymnoti-
formes, Tetraodontiformes, and Gyrinocheilus. Three genes,
acvr2a (Albertson et al., 2005), eda, and edar (Harris et al.,

2008), when disrupted, result in phenotypes that include
absence of teeth on the ceratobranchial five element in
zebrafish. One might ask, for example, whether the loss of

ceratobranchial five teeth in the common aquarium fish, the
algae-eater Gyrinocheilus, is related to changes in regulation of
one of these genes.

Dorsal fin, absent. A query for taxa that lack a dorsal fin yields

58 taxa, including all Gymnotiformes (knifefishes) and some
Siluridae (catfishes). Two genes, hoxa13a (Crow et al., 2009)
and tfap2a (Li and Cornell, 2007), are linked to zebrafish

phenotypes of median fin fold absence. Because the formal
develops from relation relates dorsal fin to median fin fold in
the Teleost Anatomy Ontology, a search for genes associated

with dorsal fin phenotypes can return genes associated with the
median fin fold phenotypes as well. Thus genes influencing the
development of the precursors of structures may be considered

as candidates in a search for the basis of the evolutionary
novelty of dorsal fin loss in, for example, a gymnotiform
knifefish.

Preopercle, shape. The preopercle varies in shape in 546 taxa,

including Amiiformes, Aspidorhynchiformes, Characiformes,
Clupeiformes, Cypriniformes, Ellimmichthyiformes, Elopifor-
mes, Esociformes, Gonorynchiformes, Gymnotiformes,

Hiodontiformes, Lepisosteiformes, Osteoglossiformes, Sal-
moniformes, Semionotiformes, and Siluriformes. No pheno-
types are recorded for preopercle shape in zebrafish. However,
if the search is broadened to include shape phenotypes from

other parts of the opercular series (branchiostegal rays,
interopercle, opercle, preopercle, and subopercle) then nine
genes with mutant phenotypes are revealed: acvr2a, acvr2b

(Albertson et al., 2005), edn1 (Walker et al., 2007), furina
(Walker et al., 2006), jag1b, notch2 (Zuniga et al., 2010),
mef2ca (Kimmel et al., 2003), plcb3 (Walker et al., 2007), and

unm_t3153. On the other hand, if the search is broadened from
preopercle to include shape changes in other components of
the dorsal hyoid arch, ten genes, some of them different from
above, are found. Any of these genes provide a starting point

for investigating the possible bases for shape changes in this
dermal bone.

In fact, much of the skeletal variation that exists among fish

species involves changes in shape, and approximately a fifth of
the species phenotypes in the KB reflect this. Mutations in 920
of the 4307 zebrafish genes in the KB produce a change in

shape of some aspect of anatomy in 1435 (of 26 934 total) gene
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phenotypes. Changes in shape, especially in integrated skeletal
structures may be very indirect, reflected in the increase in

number of potential links. This lack of direct causality makes
hypothesis testing difficult for complex structures.

Eye, decreased in size. A query of the Phenoscape KB informs
the user that in all Siluriformes and Gymnotiformes,

generalized from 57 studied species, the eye is reduced in size
relative to the surrounding infraorbital bones (Fink and Fink,
1981). Mutations in 574 zebrafish genes produce reduced eye

size, including, for example, pbx4 (French et al., 2007).

Scales, absent. Scales are frequently lost on the head and body
of fishes, and Phenoscape KB lists 336 taxa from 27 teleostean
orders, including e.g., Siluriformes (catfishes), in which all
scales are absent except for bony tubes of the lateral line (Fink

and Fink, 1981). Three zebrafish genes, eda, edar (Harris et al.,
2008), and unm_t31273, are candidates for this phenotype.

Basihyal, absent. All Siluriformes (catfishes) and four other teleos-
tean species with data in the Phenoscape KB have lost the

basihyal element, i.e., the anterior-most median element of the gill
arches, or �tongue� of the fish. The disruption of eleven zebrafish
genes, including brpf1 (Laue et al., 2008), disc1 (Wood et al.,
2009), disp1 (Schwend and Ahlgren, 2009), fac (Schilling et al.,

1996), foxd3 (Neuhauss et al., 1996), hand2 (Miller et al., 2003),
kat6a (Laue et al., 2008), sox9a (Yan et al., 2002), unm_th9,
unm_tn20c, and unm_ty5 result in an aplastic or absent basihyal

phenotype.

Limitations and biases in candidate genes –taxon approach

These examples demonstrate the ease with which genetic
phenotypes may be aligned with diverse taxon phenotypes
using ontologies to yield testable hypotheses. They also expose

possible limitations, such as a bias toward well-studied
pleiotropic genes such as eda or edar, which are proposed as
candidates in several of the above cases. Missing phenotype
data for taxa, whether because the taxa have never been

surveyed for particular features or because these data have not
been entered into the Phenoscape KB, also limit this approach,
as does the coarseness of phenotype annotations for both genes

and taxa. Other sources of bias include the different focus of
phenotypic study in zebrafish developmental biology (neural
system) vs. fish comparative morphology (skeletal system) and

the difference in developmental stage under study, i.e., embryos
and larvae in zebrafish vs. adults in comparative studies.

Integration of taxon phenotypes across studies

Ontology-annotations of phenotypic data surmount the diffi-
culty of recovering the distribution of any skeletal feature

across a set of taxa. The data can easily be viewed, summa-
rized, and synthesized across studies at a scale not previously
possible. As an example, the distribution of skeletal data,

stratified by skeletal region across the five orders of ostari-
ophyan fishes and their sister taxon order, the Clupeiformes
(Fig. 1) reveals the disproportionate level of data on paired

fins in the Siluriformes, reflecting the rich variation in pectoral
fin spine ornamentation in this clade. The distribution of
species phenotypes across particular skeletal elements, body

regions, etc. can be ascertained easily for any sample of
publications in the KB.

Translational biodiversity

One of the most significant discoveries from the past decade is
that genes, intron–exon structure, synteny, gene expression
patterns, networks, and developmental processes, are highly
conserved, well beyond expectation, across very distantly

related organisms (Degnan, 2010). Examples of deep conser-
vation or �deep homology� (Shubin et al., 2009) have become
common and familiar across greatly divergent species, e.g., the

function of Irx and hnf1 genes in lampreys are conserved
across vertebrates for positioning the r4 ⁄ r5 boundary
(Jimenez-Guri and Pujades, 2011); the pigment gene slc24a5is

functionally conserved between zebrafish and humans (Lama-
son et al., 2005); common genes control eye development
(Gehring, 2004) and appendage development (Pueyo and
Couso, 2005) from insects to humans (Carroll et al., 2005).

Biomedical researchers have leveraged this conservation to
translate studies from model organisms to human medicine, so-
called �translational medicine� (Washington et al., 2009). For

example, because important pathways such as insulin signaling
have remained relatively unchanged during evolution, many
human diseases, including cancer, are studied effectively in the

nematode C. elegans (Markaki and Tavernarakis, 2010). Hu-
man craniofacial defects have been elucidated significantly by
studies of zebrafish (Ghassibe-Sabbagh et al., 2011; Laue

et al., 2011; Petrey et al., 2011), mouse (Tuveson and Hana-
han, 2011), and Xenopus (Warkman and Krieg, 2007).
Further leveraging the conservation of developmental genes

and networks to translate from model organisms to the

breadth of species beyond humans, an approach that could be
termed �translational biodiversity,� is supported by the Pheno-
scape KB. Here, and demonstrated by the examples above,

genetic and developmental data from zebrafish are leveraged to
propose candidate genes for evolutionary changes in skeletal
phenotypes across fish species, and the descriptive data from

the field of comparative and evolutionary morphology are
made accessible for searching and aggregating data across the
breadth of species. These two disparate data-stores, one from

molecular genetics and development and the other from

Fig. 1. Distribution of skeletal phenotypes in the Phenoscape Knowl-
edgebase across the cranium (blue), paired fins (red), and postcranial
axial skeleton (green) for Clupeiformes and the five ostariophysan
orders
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comparative morphology and evolution, can thus be rendered
explorable and usable to researchers in other domains.

Although some differences in developmental mechanisms
among similar phenotypes will certainly have arisen in the
course of evolution (e.g., Tanaka et al., 2002), this computa-

tional approach to generating candidate genes is attractive,
because studying the genetic and developmental bases of
evolutionary phenotypes using the laboratory approaches
from model organisms is simply impractical for the millions

of extant species on earth. A fully developed �translational
biodiversity� will require databases of computable phenotypes
for both model organisms and taxonomic groups that

computers can understand and reason across. Such an
ontology-based approach promises powerful data synthesis
and discovery at a scale not otherwise possible. It also makes

data accessible for broad groups of researchers and creates
opportunities for new and synthetic research.
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