881 research outputs found

    A Simple Boltzmann Transport Equation for Ballistic to Diffusive Transient Heat Transport

    Get PDF
    Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, ii) that phonon transport at early times approach the ballistic limit in samples of any length, and iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions.Comment: 9 pages, 5 figure

    Purification of quantum trajectories

    Get PDF
    We prove that the quantum trajectory of repeated perfect measurement on a finite quantum system either asymptotically purifies, or hits upon a family of `dark' subspaces, where the time evolution is unitary.Comment: 10 page

    Information Transfer Implies State Collapse

    Full text link
    We attempt to clarify certain puzzles concerning state collapse and decoherence. In open quantum systems decoherence is shown to be a necessary consequence of the transfer of information to the outside; we prove an upper bound for the amount of coherence which can survive such a transfer. We claim that in large closed systems decoherence has never been observed, but we will show that it is usually harmless to assume its occurrence. An independent postulate of state collapse over and above Schroedinger's equation and the probability interpretation of quantum states, is shown to be redundant.Comment: 13 page

    Localized states influence spin transport in epitaxial graphene

    Get PDF
    We developed a spin transport model for a diffusive channel with coupled localized states that result in an effective increase of spin precession frequencies and a reduction of spin relaxation times in the system. We apply this model to Hanle spin precession measurements obtained on monolayer epitaxial graphene on SiC(0001) (MLEG). Combined with newly performed measurements on quasi-free-standing monolayer epitaxial graphene on SiC(0001) our analysis shows that the different values for the diffusion coefficient measured in charge and spin transport measurements in MLEG and the high values for the spin relaxation time can be explained by the influence of localized states arising from the buffer layer at the interface between the graphene and the SiC surface.Comment: 6 pages, 3 figures, including supplementary materia

    Unconventional Gravitational Excitation of a Schwarzschild Black Hole

    Get PDF
    Besides the well-known quasinormal modes, the gravitational spectrum of a Schwarzschild black hole also has a continuum part on the negative imaginary frequency axis. The latter is studied numerically for quadrupole waves. The results show unexpected striking behavior near the algebraically special frequency Ω=4i\Omega=-4i. This reveals a pair of unconventional damped modes very near Ω\Omega, confirmed analytically.Comment: REVTeX4, 4pp, 6 EPS figure files. N.B.: "Alec" is my first, and "Maassen van den Brink" my family name. v2: better pole placement in Fig. 1. v3: fixed Refs. [9,20]. v4: added context on "area quantum" research; trimmed one Fig.; textual clarification

    Hamiltonian and Linear-Space Structure for Damped Oscillators: I. General Theory

    Full text link
    The phase space of NN damped linear oscillators is endowed with a bilinear map under which the evolution operator is symmetric. This analog of self-adjointness allows properties familiar from conservative systems to be recovered, e.g., eigenvectors are "orthogonal" under the bilinear map and obey sum rules, initial-value problems are readily solved and perturbation theory applies to the_complex_ eigenvalues. These concepts are conveniently represented in a biorthogonal basis.Comment: REVTeX4, 10pp., 1 PS figure. N.B.: `Alec' is my first name, `Maassen van den Brink' my family name. v2: extensive streamlinin
    corecore