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A simple Boltzmann transport equation for ballistic to diffusive transient
heat transport

Jesse Maassena) and Mark Lundstrom
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Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and

time scales is needed to further enable scientific insight and technology innovation. Using a

simplified form of the Boltzmann transport equation (BTE), originally developed for electron

transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily

and naturally captured. We show how this approach compares well to the phonon BTE, and readily

handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat

transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballis-

tic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in sam-

ples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are

present, originate from reductions in temperature gradient. Importantly, this framework can be

recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to captur-

ing ballistic heat effects is to use the correct physical boundary conditions. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4916245]

I. INTRODUCTION

Transient thermal transport is a problem of great interest

from both fundamental and applied perspectives. For exam-

ple, it is an important factor in self-heating in small elec-

tronic devices, in phase-change memory, and in heat-assisted

magnetic recording.1 Time/frequency-domain thermal reflec-

tance (TDTR/FDTR) makes use of rapid thermal transients

to measure the thermal properties of materials.2,3 It is now

well known that ballistic phonon transport becomes impor-

tant in structures with small feature sizes as well as in large

structures under rapid transient conditions.4,5 While first

principles simulations,6–9 and other physically detailed tech-

niques, have contributed to our understanding of the basic

science, there remains a need for simplified thermal transport

approaches that capture the essential physics and that are

computationally tractable. A technique that can be derived

from the phonon Boltzmann transport equation (BTE) with

clearly identified simplifications and that provides reasonable

accuracy and excellent computational efficiency all the way

from the ballistic to diffusive limits is described in this

paper.

Traditionally, heat transport has been described by

Fourier’s law with the heat equation (HE), but an unphysical

implication of this approach is that phonons can travel at

infinite speed.10 The hyperbolic heat equation (HHE) resolves

this issue by adding a term to the heat equation that ensures a

finite propagation velocity.10,11 It is generally understood that

these approaches are valid only when heat transport is diffu-

sive and the characteristic length scales are much larger than

the phonon MFP.12 Sub-continuum approaches such as the

BTE,6,10,11,13–21 molecular-dynamics,22–25 and Monte-Carlo

simulations26–28 capture quasi-ballistic phonon transport as

well as retardation effects due to finite-velocity propagation. It

is generally thought that the treatment of ballistic phonons

requires going beyond the HE or HHE.10

Sophisticated detailed modeling has added much to the

fundamental understanding of ballistic effects in phonon

transport, but there is also a need for simplified, computa-

tionally efficient, but accurate analysis techniques. Several

such approaches have been proposed.10,11,13–15,18–21,29–31

These often follow one (or both) of the following strategies:

(i) use the phonon BTE simplified to obtain solutions for one

specific problem, (ii) use a two-channel model to treat ballis-

tic and diffusive phonons separately. Our goal in this paper

is to contribute to this work by introducing a technique that

combines the physics of the phonon Boltzmann equation

with the computational efficiency of diffusive equations.

In a recent paper, we showed that the McKelvey-

Shockley flux method, a simple form of the BTE, provides

highly accurate solutions for steady-state thermal transport

from the ballistic to diffusive limits.32 In this paper, we

extend the work in Ref. 32 to the transient case and demon-

strate that it naturally includes ballistic and diffusive phonon

transport and finite-velocity heat propagation, and thus is ap-

plicable on all length and time scales. Good agreement with

the full phonon BTE is obtained, while requiring substan-

tially less computational effort. Interestingly, we prove that

our simple BTE can be rewritten exactly as the Cattaneo and

hyperbolic heat equations. Both ballistic effects and the finite

propagation time are treated when the correct boundary con-

ditions are used.

The paper is organized as follows: Section II describes

the McKelvey-Shockley flux method and extends the work

in Ref. 32 to the transient case. In Sec. III, we demonstrate

the technique by treating transient heat conduction through aa)Electronic address: jmaassen@purdue.edu
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dielectric film. Within this section, extensions to realistic

phonon dispersions and energy-dependent mean-free-paths

are discussed and demonstrated, and the technique is bench-

marked against numerical solutions to the full phonon BTE.

Section IV describes the connection between the McKelvey-

Shockley flux method and well-known traditional heat trans-

port equations, and lastly, in Sec. V, we summarize our

findings.

II. THEORETICAL APPROACH

A. Phonon flux and density

Our starting point is the McKelvey-Shockley flux

method,33,34 an approach developed to treat electron trans-

port and recently reformulated to handle phonon/heat trans-

port.32 In this work, we consider 1D transport along x, with y
and z directions extending to infinity. This technique catego-

rizes phonons into two components, those that are forward

moving (vx> 0) and backward moving (vx< 0). The govern-

ing equations describe how the phonon flux, the product of

phonon density and phonon velocity, varies in space and

time. The McKelvey-Shockley flux equations are35

1

vþx

dFþ

dt
þ dFþ

dx
¼ �Fþ

k
þ F�

k
; (1)

� 1

vþx

dF�

dt
þ dF�

dx
¼ �Fþ

k
þ F�

k
; (2)

where Fþ=�ðx; t; �Þ are the forward/backward phonon fluxes

[units: #phonons m�2 s�1 eV�1], vþx ð�Þ is the average x-pro-

jected phonon velocity, k(�) is the mean-free-path for back-

scattering, and � is the phonon energy. Equations (1) and (2)

are coupled through their scattering terms (right-hand terms),

which describe how phonons scatter in/out of each flux type.

Scattering is described by k, which is the average distance

traveled along x before a forward-moving ("þ") or

backward-moving ("�") phonon is backscattered.36 vþx is re-

sponsible for finite-velocity and retardation effects. We refer

readers to the note in Ref. 37, which provides the definitions

of kð�Þ and vþx ð�Þ, given some ~k-dependent scattering time

sð~kÞ and x-projected velocity vxð~kÞ. The McKelvey-

Shockley flux method can be derived from the BTE; the case

of steady-state is treated in Refs. 38 and 39, and a more gen-

eral derivation will be presented in future work. We note that

the McKelvey-Shockley flux equations have close similar-

ities to the two-flux methods used to treat photon40 and

heat41 transport. In particular, Regner et al. recently treated

problems similar to those discussed here in Ref. 19. The

work presented here adds a treatment of realistic phonon dis-

persion and energy-dependent mean-free-paths and a con-

nection to conventional diffusion equations.

Since Eqs. (1) and (2) are first order in x and t, we must

specify one spatial and temporal boundary condition for each

flux component. The spatial boundary conditions correspond

to specifying the injected phonon fluxes at the boundaries:

Fþð0þ; t; �Þ at the left end, and F�ðL�; t; �Þ at the right end,

where L is the length of the thermal conductor (depicted in

Fig. 1). The temporal boundary conditions, depending on the

problem at hand, will generally correspond to specifying the

forward/backward fluxes at some given time t0 : Fþðx; t0; �Þ
and F�ðx; t0; �Þ.

The directed fluxes F6 are related to the net phonon flux

F and the phonon density n through the relations

Fðx; t; �Þ ¼ Fþðx; t; �Þ � F�ðx; t; �Þ; (3)

n x; t; �ð Þ ¼
Fþ x; t; �ð Þ þ F� x; t; �ð Þ

vþx �ð Þ : (4)

The total net phonon flux Ftot and total phonon density ntot

are obtained by integrating over energy

Ftotðx; tÞ ¼
ð1

0

Fðx; t; �Þ d�; (5)

ntotðx; tÞ ¼
ð1

0

nðx; t; �Þ d�: (6)

Equations (1) and (2), with the appropriate boundary

conditions, describe the spatial and temporal evolution of

phonons in a material. Next, we show how to relate phonon

fluxes to quantities relevant for heat transport.

B. Heat current and density

The heat current is obtained by simply multiplying the

phonon flux times the phonon energy

I6
Q ðx; t; �Þ ¼ �F6ðx; t; �Þ: (7)

We can then define the net heat current (IQ) and heat density

(Q) as

IQðx; t; �Þ ¼ IþQðx; t; �Þ � I�Qðx; t; �Þ; (8)

Q x; t; �ð Þ ¼
IþQ x; t; �ð Þ þ I�Q x; t; �ð Þ

vþx �ð Þ : (9)

By integrating over energy, and hence all phonons, we

obtain the total heat current (Itot
Q ) and heat density (Qtot)

Itot
Q ðx; tÞ ¼

ð1
0

IQðx; t; �Þ d�; ½W m�2�; (10)

Qtotðx; tÞ ¼
ð1

0

Qðx; t; �Þ d�; ½J m�3�: (11)

FIG. 1. Thermal conductor of length L. The mean-free-path for backscatter-

ing k controls the scattering between the forward/backward fluxes. By speci-

fying the injected phonon fluxes (solid arrows), the McKelvey-Shockley flux

equations describe the evolution of the fluxes inside the material.
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By replacing phonon flux F6 by heat current I6
Q , all the

equations presented in Sec. II A can be used to treat heat

transport. From this point on, unless deemed important, the

explicit dependence of quantities on energy � will be dropped

to simplify the presentation. Keep in mind that a final inte-

gration over energy is required to compute the total phonon

flux/density and total heat current/density.

C. Temperature

In addition to heat current and heat density, it is com-

mon to calculate temperature profiles. We note, however,

that temperature is an equilibrium quantity, and in cases

where the phonon population is far from equilibrium its defi-

nition may become ambiguous. In this work, we will con-

sider small applied temperature differences at the ends of the

thermal conductor (DT ¼ TL � TR, where TL;R are the tem-

peratures of the left/right contacts), which ensures that the

system is near equilibrium and temperature is well defined.

Note, however, that the McKelvey-Shockley flux approach

itself is not strictly limited to small applied temperature

differences.

The forward/backward heat currents can be expanded as

I6
Q ðx; tÞ ¼ I6

Q;eq þ dI6
Q ðx; tÞ; (12)

where IþQ;eq ¼ I�Q;eq is the equilibrium heat current resulting

from a constant background reference temperature Tref , and

dI6
Q is a small correction resulting from a small applied DT.

Temperature is related to heat density by dQ ¼ CV dT,

where CV is the volumetric heat capacity. Using this with

Eqs. (9) and (12), we find that temperature can be expressed

as

T x; tð Þ ¼
dTþ x; tð Þ þ dT� x; tð Þ

2

� �
þ Tref ; (13)

dT6 x; tð Þ ¼
2 dI6

Q x; tð Þ
CV vþx

; (14)

where dT6 is the correction in temperature relative to Tref

for each phonon component (forward and backward) and CV

is the heat capacity at Tref .

The calculational procedure is as follows. Given some

contact temperatures TL/TR (which can be time-dependent),

the injected heat fluxes from each contact are computed (the

relation between TL/TR and IþQð0þÞ=I�QðL�Þ is shown later).

Using the injected heat fluxes as boundary conditions, we

calculate the directed heat fluxes for all x and t using Eqs. (1)

and (2), replacing F6 with I6
Q (it is convenient to solve

directly for dI6
Q since I6

Q;eq only adds a constant). If a temper-

ature profile is desired, T(x, t) can be determined from Eqs.

(13) and (14).

As we will illustrate in Sec. III, the McKelvey-Shockley

flux method captures ballistic and finite-velocity propagation

effects, and is thus applicable on all length and time scales.

Later, we will find that the McKelvey-Shockley equations

are exactly equivalent to well-known diffusive equations.

III. EXAMPLE: TRANSIENT HEAT CONDUCTION
ACROSS A DIELECTRIC FILM

Here, we apply the McKelvey-Shockley flux method to

an example of transient thermal conduction through a dielec-

tric film. We assume the dielectric film of length L (in which

the electronic contribution to thermal transport can be

neglected) is joined by two ideal thermalizing left and right

contacts. As discussed in Ref. 32, an ideal contact is in ther-

mal equilibrium described by Bose-Einstein statistics and is

perfectly absorbing/reflectionless, meaning phonons that

reach the contact do not backscatter at the interface. Note

that ideal contacts are assumed for this example, but this is

not a limitation of the McKelvey-Shockley flux method; any

specified injected heat currents at the ends of the thermal

conductor can be used as the boundary conditions.

Before time t ¼ 0�, the film is at equilibrium

Tref ¼ 300 K, after t ¼ 0þ the left contact temperature is

raised by some small DT and the right contact temperature is

kept fixed, as depicted in Fig. 2. In the case of equilibrium

contacts, we can easily relate the contact temperature to the

injected heat current

IþQ 0þ; t; �
� �

¼ � vþx �ð ÞD �ð Þ
2

fBE �; TL tð Þð Þ; (15)

I�Q L�; t; �ð Þ ¼ � vþx �ð ÞD �ð Þ
2

fBE �; TR tð Þð Þ; (16)

where Dð�Þ is the phonon density of states, fBE is the Bose-

Einstein distribution and the factor of two comes from half

the states being forward and backward moving. Note that the

product vþx ð�ÞDð�Þ=2 ¼ Mð�Þ=h, where Mð�Þ is the phonon

distribution of modes and h is Planck’s constant, which can

be efficiently calculated from the phonon dispersion.42–44

When TL¼TR, the injected fluxes are equal and no net

heat current flows. However, if TL> TR, the left contact will

inject a larger heat current than the right contact, which will

drive a net heat current, as illustrated in Fig. 2. Using Eqs.

(15) and (16) as boundary conditions, we can solve the

FIG. 2. Applied temperature at the left and right contacts, TL and TR, versus

time. Top insets: area plots showing occupation of the forward-moving

(blue) and backward-moving (red) phonon states injected at the left and right

ends, respectively, of the thermal conductor. � and k are the energy and the

wavenumber of the phonons, respectively. For t< 0, TL¼TR leading to

equal numbers of injected phonons. For t> 0, TL ¼ TR þ DT, which results

in a larger number of forward states injected at the left side of the material.
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McKelvey-Shockley flux equations by replacing F6 with I6
Q

in Eqs. (1) and (2). For a small DT ¼ TL � TR, we can

expand Eq. (15) to first order around TR, and solve the

McKelvey-Shockley flux equations directly for dI6
Q , as

defined in Eq. (12).

A. Diamond film: Constant velocity and
mean-free-path

In this example, we consider diamond as our dielectric

material, so we may compare to the results of the full phonon

BTE for the same problem.10 Here, we use k ¼ 60 nm,45

which provides a good fit to the steady-state and transient

results in Ref. 10. Typically, kð�Þ in a bulk material can vary

by orders of magnitude, however, in Ref. 10, and thus in this

work, an effective single energy-independent k is used.

Given diamond’s large Debye temperature (�1860 K),10

this material can be modeled at 300 K by assuming a linear

phonon dispersion with group velocity vg ¼ 12 288 m=s. The

distribution of modes in this case can be written as

Mð�Þ ¼ 3�2=ð4p�h2v2
gÞ.

42 When considering a linear disper-

sion and an energy-independent k, the McKelvey-Shockley

flux equations need to be solved only once instead of at each

energy (see Appendix A). For numerical details, see

Appendix B.

Fig. 3 presents the normalized temperature profile

(Tðx; tÞ � TRÞ=ðTL � TRÞ versus normalized position x/L for

diamond films of length L¼ 0.1 lm (a), 1 lm (c), and 10 lm

(e). Lines are solutions of the McKelvey-Shockley flux

method and symbols are results of the full phonon BTE taken

from Ref. 10. The temperature profiles are plotted at differ-

ent normalized times s ¼ t=tball, where tball ¼ L=vg is the

ballistic transit time for a phonon traveling at the group

velocity vg.

An important feature of the temperature profiles is the

temperature discontinuities at the ends of the thermal con-

ductor. These temperature jumps at the contacts (dTc) are

signatures of ballistic phonon transport,10,11,32 and do not

arise in conventional solutions of the heat equation or the

hyperbolic heat equation10,11 (the HE and HHE would give

normalized temperatures of 1 and 0 at the left and right con-

tacts, respectively). dTc decreases as L increases and trans-

port shifts from ballistic (k� L) to diffusive (k� L). We

previously showed that in steady-state dTc ¼ T DT=2,32

where T ¼ k=ðkþ LÞ is the transmission coefficient describ-

ing the probability of a phonon traveling from one contact to

the other (ballistic: T ! 1, diffusive: T ! k=L). The agree-

ment of dTc between our approach and the full phonon BTE,

over varying L and s, is good; especially considering the

enormous reduction in complexity of the McKelvey-

Shockley flux method. We reemphasize that our contacts are

reflectionless, thus dTc is not the result of added phonon scat-

tering at the interface—it is the signature of ballistic

transport.

Another important characteristic observed in the temper-

ature profiles is a finite-velocity propagation of phonons.

This is most easily seen in the L¼ 0.1 lm film at short times

s¼ 0.1–1, where a wave-front behavior is clearly observed

as phonons travel into the thermal conductor. A finite k

makes the wave-front decay as it moves further into the ma-

terial; "þ" phonons scatter and become "�" phonons. For an

isotropic phonon dispersion, we have vþx ¼ vg=2, thus on av-

erage phonons have traveled only L/2 at time s¼ 1, as shown

in Fig. 3(a). The average time required by the phonon packet

to traverse the film transitions from ðL=vþx Þ for ballistic trans-

port to ðL2=DphÞ for diffusive transport, where Dph ¼ vþx k=2

is the phonon diffusion coefficient.32

The differences between the McKelvey-Shockley

approach and the full BTE, observed in Fig. 3, are easily

understood. In the case of L¼ 0.1 lm, when transport is

quasi-ballistic, the BTE shows a smoother temperature pro-

file than McKelvey-Shockley. The temperature profile

obtained with the BTE is smoother since it considers pho-

nons with vx varying from 0 to vg, however, only a single,

angle-averaged vþx is used with McKelvey-Shockley leading

to a more abrupt temperature distribution. A finer discretiza-

tion in angle could be used, but that would just make the

approach identical to the full BTE. The simple discretization

into forward and reverse streams eliminates two degrees of

freedom (a summation over k-points in the 3D Brillouin

zone is replaced by an integration over energy) while retain-

ing good accuracy under transient conditions and producing

steady-state results that are identical to the BTE.32

FIG. 3. Normalized temperature profile ðTðx; tÞ � TRÞ=ðTL � TRÞ and nor-

malized heat current IQðx; tÞ=Iball
Q in diamond films versus normalized posi-

tion x/L, where Iball
Q is the steady-state ballistic heat current. Three film

lengths are considered: L¼ 0.1 lm (a) and (b), 1 lm (c) and (d), 10 lm (e)

and (f). The results are plotted at different normalized times s ¼ t=tball,

where tball ¼ L=vg is the ballistic transit time and vg is the group velocity.

Lines are solutions of the McKelvey-Shockley flux method, and symbols

correspond to the phonon BTE.10
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In Fig. 3, the normalized heat current IQðx; tÞ=Iball
Q versus

x/L is presented for L¼ 0.1 lm (b), 1 lm (d), and 10 lm (f),

where Iball
Q ¼ KballDT is the steady-state ballistic heat current

and Kball ¼ CVvþx =2 is the ballistic thermal conductance.42

Interestingly, at early times the heat current is much larger

than that at steady-state. This happens because at very short

times the "þ" phonons injected at x¼ 0 have not had the

time to backscatter, leading to enhanced IQ. The transient IQ

eventually settles to a constant steady-state value, which cor-

responds to the transmission coefficient T ¼ IQ=Iball
Q .32 In

the absence of internal heat generation, a position-

independent steady-state IQ is guaranteed with the

McKelvey-Shockley flux method; by subtracting Eq. (2)

from Eq. (1) and using Eqs. (8) and (9), we obtain the energy

balance equation

dQ

dt
¼ � dIQ

dx
: (17)

Fig. 4 shows the normalized temperature profile and nor-

malized heat current versus normalized time for L¼ 0.1 lm

(a) and (b), 1 lm (c) and (d), and 10 lm (e) and (f). We plot

the thermal response at the left and right ends of the thermal

conductor, x¼ 0 and x¼ L, respectively. At very short times,

the x¼ 0 temperature is always close to 1/2, then increases

and saturates. Similarly, the x¼ 0 heat current is close to 1

(the ballistic limit), then decreases and saturates. Why does

this happen?

Shortly after t ¼ 0þ, the "þ" states are filled with pho-

nons injected from the left contact, while the "�" states are

empty. From Eq. (13), normalized temperature is simply

ðdTþ þ dT�Þ=2 (assuming DT ¼ 1 K for simplicity), where

at early enough times at the left side dTþ ¼ 1 and dT� ¼ 0,

which averages to 1/2. This is, in fact, the temperature profile

of a ballistic thermal conductor (temperature drop occurs

only at the contacts).46 Having only the "þ" states filled

means that the heat current is maximal and will at the ballis-

tic limit, as shown in Fig. 4.

Importantly, a normalized temperature approaching 1/2

accompanied by a heat current near the ballistic limit are

observed even when L ¼ 10 lm� k. This shows that, at

early enough time, ballistic phonon effects are important

even in “diffusive” samples. Such phenomenon is relevant

for rapid time-resolved thermal characterization techniques,

including time- and frequency-domain thermoreflectance

measurements.2–4

In Fig. 4, we find the left side temperature increases

simultaneously as the heat current decreases. How are these

two observations related? It is possible to express the tempera-

ture jump at the contact, physically originating from nonequi-

librium ballistic effects (filled "þ" states and empty "�"

states), in terms of a contact resistance (see Appendix C)

dTc 0; tð Þ ¼ Rball
th IQ 0; tð Þ

2
; (18)

where Rball
th ¼ 1=Kball ¼ 2=CVvþx is the ballistic thermal re-

sistance, and the factor of two comes from dividing the re-

sistance over the left and right contacts. From Eq. (18), we

find that the temperature discontinuity is proportional to the

heat current at that point, which is exactly what we observe

when comparing temperature and heat current in Fig. 4.

The results presented in Figs. 3 and 4 show that, for this

simple model problem, a full treatment of the phonon BTE

agrees surprisingly well with a very simple phonon BTE of

the form of Eqs. (1) and (2).

B. Silicon film: Full phonon dispersion and
energy-dependent mean-free-path

Up to this point, we have considered a diamond film

using a linear phonon dispersion and energy-independent k.

For the vast majority of situations, however, accurate quan-

titative modeling of phonon transport requires full phonon

dispersions and an energy-dependent kð�Þ. Here, we calcu-

late the transient thermal transport properties of a silicon

film, using the phonon band structure of bulk Si extracted

from first principles (Fig. 5(a)) and an energy-dependent

kð�Þ including boundary, defect and phonon-phonon scatter-

ings (Fig. 5(b)), calibrated to experimental data (details

found in Ref. 32). Details of how kð�Þ and vþx ð�Þ are related

to ~k-dependent scattering time sð~kÞ and x-projected veloc-

ities vxð~kÞ are provided in Ref. 37. The total (energy-inte-

grated) heat current is obtained from the energy-dependent

forward/backward heat fluxes I6
Q ð�Þ using Eq. (10). See

FIG. 4. Normalized temperature profile ðTðx; tÞ � TRÞ=ðTL � TRÞ and nor-

malized heat current IQðx; tÞ=Iball
Q in diamond films versus normalized time

s ¼ t=tball, where Iball
Q is the steady-state ballistic heat current, tball ¼ L=vg is

the ballistic transit time, and vg is the group velocity. Three film lengths are

considered: L¼ 0.1 lm (a) and (b), 1 lm (c) and (d), 10 lm (e) and (f). Lines

are solutions of the McKelvey-Shockley flux method, and symbols corre-

spond to the phonon BTE (with IQ normalized to reproduce the McKelvey-

Shockley flux value at s ¼ 10�3).10
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Appendix D for how to calculate the total temperature pro-

file from I6
Q ð�Þ.

Fig. 5 presents (c) the normalized temperature and (d)

the normalized heat current of a L¼ 30 nm Si film versus x/L
at different times t. The symbols correspond to results of the

full phonon BTE taken from Ref. 17, where a full phonon

dispersion and energy-dependent MFP was also used. The

overall agreement between the McKelvey-Shockley flux

method and the full BTE is quite good; particularly, given

the greatly reduced computational effort of our approach.

At short times, McKelvey-Shockley flux shows a slower

propagation speed since we use a single angle-averaged x-pro-

jected velocity vþx ð�Þ < vgð�Þ, where vgð�Þ is the group veloc-

ity. Our temperature discontinuities compare very well to

those of the full BTE, except at the right side at short times

(as just discussed). Compared to the case of diamond, we

observe more features in the temperature and heat current pro-

files, because different phonons can travel at different veloc-

ities and scatter at different rates governed by the energy-

dependent parameters vþx ð�Þ and kð�Þ. We note in passing that

using the average bulk hki leads to significantly different

results compared to using the energy-dependent kð�Þ.
In summary, the McKelvey-Shockley flux method cap-

tures the general trends and essential physics (i.e., tempera-

ture jumps and finite-velocity propagation of heat) of the

phonon BTE, and can be a simple alternative for modeling

heat transport.

IV. CATTANEO EQUATION AND THE HYPERBOLIC
HEAT EQUATION

We have shown that the McKelvey-Shockley flux

method can treat heat transport including ballistic effects,

finite-velocity propagation and can provide reasonable accu-

racy to the phonon BTE. Here, we demonstrate how the

McKelvey-Shockley equations can be recast into familiar

diffusion equations, without approximation.

By adding the two McKelvey-Shockley flux equations

(Eqs. (1) and (2), with F6 replaced by I6
Q ), and using the def-

initions for the net heat current (Eq. (8)) and heat density

(Eq. (9)), we find

IQ þ sQ
@IQ

@t
¼ �Dph

@Q

@x
; (19)

¼ �j
@T

@x
; (20)

where sQ ¼ k=ð2vþx Þ is the heat relaxation time, Dph

¼ vþx k=2 is the phonon diffusion coefficient, and j
¼ CVDph ¼ CVvþx k=2 is the bulk thermal conductivity (this

expression for j is equal to the traditional relation CVvgl=3,

where l is the mean-free-path32). Equation (20) is simply the

Cattaneo equation.10,11 Combining the Cattaneo equation

with the energy balance equation (Eq. (17)), we obtain

sQ
@2T

@t2
þ @T

@t
¼ Dph

@2T

@x2
; (21)

where we assume the material parameters are x-independent.

Equation (21) is the well-known hyperbolic heat equation,

derived from the McKelvey-Shockley flux equations without
making any assumption on L relative to k. This indicates that

ballistic phonon effects, which are present in the McKelvey-

Shockley flux approach, are also captured by the HHE.

Hence, all the results presented in this work are in fact sim-

ply solutions of the HHE.

The key to capturing ballistic transport within the HHE

is to use the correct physical boundary conditions. We previ-

ously demonstrated that with the proper boundary conditions

Fourier’s law and the HE can treat steady-state heat transport

on all length scales, and accurately reproduce results of the

phonon BTE.32 The fact that the first order Boltzmann equa-

tion can be rewritten exactly as a second order equation is

well known in neutron transport.48,49

Traditionally, one solves the HHE by using the contact

temperatures, TL and TR, as the boundary conditions. As we

showed earlier, the injected heat fluxes, IþQð0þ; tÞ and

I�Q ðL�; tÞ, are the correct physical boundary conditions.

Specifying one flux component at only one end of the ther-

mal conductor (IþQ at x ¼ 0þ, and I�Q at x ¼ L�), and not both

ends, is key to capturing the nonequilibrium nature of ballis-

tic transport.

Although the McKelvey-Shockley flux equations are

exactly equivalent to the Cattaneo/hyperbolic heat equation,

we find it most convenient to solve the former instead of the

HHE. If one desired to use the HHE (in the case of ideal con-

tacts), ballistic contact resistances could be introduced to

effectively capture dTc (Eq. (18) and Appendix C).

The HHE has previously been derived from the BTE15

by assuming local thermodynamic equilibrium at each x (we

showed earlier that this is the condition of diffusive trans-

port), while we found no such approximation to be neces-

sary. The ballistic-diffusive equations of Chen11 based on

the BTE also yielded an expression similar to the HHE, with

FIG. 5. (a) Bulk Si phonon dispersion calculated from first principles.

Symbols are measured data.47 (b) MFP distribution versus energy, including

boundary, defect, and Umklapp scatterings. Dashed line is the calculated av-

erage bulk k equal to 151 nm. (c) Normalized temperature profile ðTðx; tÞ �
TRÞ=ðTL � TRÞ and (d) normalized heat current IQðx; tÞ=Iball

Q in a L¼ 30 nm

Si film versus normalized position x/L, where Iball
Q is the steady-state ballistic

heat current. Lines are solutions of the McKelvey-Shockley flux method,

and symbols correspond to the phonon BTE.17
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additional terms due to the ballistic phonons. We find that

not only is temperature a solution of the HHE, but so are net

heat current IQ and heat density Q which can replace T in

Eq. (21). The HHE derived here suggests that heat travels at

a velocity of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dph=sQ

p
¼ vþx , as expected from the

McKelvey-Shockley flux equations. Traditionally, the HHE

is solved assuming heat propagates (in an isotropic material)

at a velocity vg=
ffiffiffi
3
p

. However, in the case of McKelvey-

Shockley (which can be derived from the phonon BTE), we

find an average propagation velocity of vþx ¼ vg=2. Lastly, we

note that for an isotropic phonon dispersion, we have

k ¼ ð4=3Þ l ¼ ð4=3Þ vg s,36 where l is the mean-free-path and

s is the phonon scattering time. Using this relation in

sQ ¼ k=ð2vþx Þ, we find sQ ¼ ð4=3Þ s, indicating that the time

required for a phonon to scatter from a forward-moving state to

a backward-moving state is 4/3 larger than the scattering time.

V. SUMMARY

In conclusion, we have shown how to use the

McKelvey-Shockley flux method to treat transient heat trans-

port. By analyzing the transient response of diamond and sil-

icon films, we demonstrated that this approach (i) captures

ballistic phonon effects, such as temperature jumps at the

boundaries, (ii) finite-velocity heat propagation, and (iii) can

easily support full phonon dispersions and energy-dependent

MFPs for detailed modeling. Our results show surprisingly

good agreement with the phonon BTE, while requiring sub-

stantially less computational effort. Interestingly, we found

that the McKelvey-Shockley flux equations can be rewritten,

without approximation, as the Cattaneo and HHEs. The key

to capturing ballistic effects in these diffusive equations is to

use the injected heat fluxes as the boundary conditions.

Several physical insights are gained: (i) The temperature

jumps at the contacts can be simply captured by including a

interface resistance equal half the ballistic thermal resistance

(a material property). The origin of the temperature jumps is

related to the non-equilibrium nature of ballistic transport,

and is not the result of enhanced scattering at the contacts.

(ii) We demonstrate that at early enough times, phonon

transport can approach the ballistic limit in samples of any

length, which is relevant for time-resolved thermal experi-

ments. (iii) We show that the HHE is applicable on all length

and time scales, which provides an explanation for why dif-

fusion equations work well in situations where ballistic

effects are present.

The approach presented in this work is conditioned by

two approximations. We assume a small applied temperature

difference, and we use an angle-averaged x-projected phonon

velocity at each energy. The latter results in wave-front tran-

sient heat propagation, rather than a smooth one expected in

practice due to the wide range of vx from phonons traveling

at all angles. While we have demonstrated this technique in

the case of 1D transport, extensions to 2D and 3D transport

will be presented in future work.

Given that this approach is strongly connected to funda-

mental physics (it is just a simple BTE derived directly from

the full BTE), it represents a promising framework for ana-

lyzing experiments and modeling structures on all length and

time scales. Finally, this work suggests that existing heat

transfer simulation tools, based on traditional diffusive equa-

tions, might be modified to capture ballistic heat transport.
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APPENDIX A: GRAY APPROXIMATION OF
ENERGY-INDEPENDENT v1

x AND k

In the case of an energy-independent vþx (i.e., linear pho-

non dispersion) and k, the McKelvey-Shockley flux equa-

tions can be rewritten directly in terms of the energy-

integrated total heat current (Itot
Q ), heat density (Qtot), and

temperature dTtot. By integrating the McKelvey-Shockley

flux equations (Eqs. (1) and (2)) over energy, we find that I6
Q

can be directly replaced with I6;tot
Q ¼

Ð1
0

I6
Q ð�Þ d�

1

vþx

dIþ;tot
Q

dt
þ

dIþ;tot
Q

dx
¼ �

Iþ;tot
Q

k
þ

I�;tot
Q

k
; (A1)

� 1

vþx

dI�;tot
Q

dt
þ

dI�;tot
Q

dx
¼ �

Iþ;tot
Q

k
þ

I�;tot
Q

k
: (A2)

The boundary conditions become Iþ;tot
Q ð0þ; tÞ ¼Ð1

0
IþQð0þ; t; �Þ d� and I�;tot

Q ðL�; tÞ ¼
Ð1

0
I�Q ðL�; t; �Þ d�. By

using the definition of total heat density (Eqs. (9) and (11)),

we have Q6;tot ¼ I6;tot
Q =vþx . Hence, I6;tot

Q in Eqs. (A1) and

(A2) can be replaced with Q6;tot

1

vþx

dQþ;tot

dt
þ dQþ;tot

dx
¼ �Qþ;tot

k
þ Q�;tot

k
; (A3)

� 1

vþx

dQ�;tot

dt
þ dQ�;tot

dx
¼ �Qþ;tot

k
þ Q�;tot

k
: (A4)

The boundary conditions for total heat density are

Qþ;totð0þ; tÞ ¼ vþx Iþ;tot
Q ð0þ; tÞ and Q�;totðL�; tÞ ¼ vþx I�;tot

Q

ðL�; tÞ. Finally, using the following properties dQtot=dx
¼dðdQtotÞ=dx;dQtot=dt¼dðdQtotÞ=dt;Qþ�Q�¼dQþ�dQ�

and dQ6;tot¼Ctot
V dT6;tot, Eqs. (A3) and (A4) can be trans-

formed into

1

vþx

d dTþ;totð Þ
dt

þ d dTþ;totð Þ
dx

¼ � dTþ;tot

k
þ dT�;tot

k
; (A5)

� 1

vþx

d dT�;totð Þ
dt

þ d dT�;totð Þ
dx

¼ � dTþ;tot

k
þ dT�;tot

k
; (A6)

where Ctot
V ¼

Ð1
0

CVð�Þ d� and dT6;tot ¼
Ð1

0
CVð�Þ

dT6ð�Þ d�=Ctot
V . The boundary conditions for temperature are

dTþ;totð0þ; tÞ ¼ TL � Tref and dT�;totðL�; tÞ ¼ TR � Tref .
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In the case of an energy-independent vþx and k, the

McKelvey-Shockley flux equations do not need to be eval-

uated at each energy �, and can be simply solved once to

extract I6;tot
Q ; Q6;tot and dT6;tot, thus significantly simplify-

ing the computational effort.

APPENDIX B: NUMERICAL SOLUTION OF THE
MCKELVEY-SHOCKLEY FLUX METHOD

The coupled partial differential equations, that are the

McKelvey-Shockley flux equations (Eqs. (1) and (2)), are

numerically solved using an explicit marching scheme for

the spatial and temporal derivatives. Given the boundary

conditions, it is natural to use a backward differencing in

space for the forward-moving flux (Eq. (1)) and a forward

differencing in space for the backward-moving flux (Eq.

(2)). A forward differencing in time was chosen with both

equations, using a time step Dt < ½Dx � k=ðDxþ kÞ�=vþx to

ensure stability. A spatial grid resolution of Dðx=LÞ � 0:002

was found to provide good accuracy.

APPENDIX C: TEMPERATURE JUMPS AND BALLISTIC
THERMAL RESISTANCE

The left side temperature jump is defined as

dTcð0; tÞ ¼ TL � Tð0þ; tÞ. Noting that TL ¼ TR þ dTþð0þ; tÞ,
since in the contacts the forward/backward temperatures are

equal, and using Eq. (13) we find

dTc 0; tð Þ ¼ dTþ 0þ; tð Þ � dT� 0þ; tð Þ½ �
2

: (C1)

The net heat current is IQðx; tÞ ¼ dIþQ ðx; tÞ � dI�Q ðx; tÞ, which

combined with Eq. (14) gives

IQðx; tÞ ¼ Kball½dTþðx; tÞ � dT�ðx; tÞ�; (C2)

where Kball ¼ CVvþx =2 is the ballistic thermal conductance.

Combining Eqs. (C1) and (C2), we obtain

dTc 0; tð Þ ¼ Rball
th IQ 0; tð Þ

2
; (C3)

where Rball
th ¼ 1=Kball is the ballistic thermal resistance.

Thus, the temperature jump can be effectively modeled as a

contact resistance equal to the ballistic thermal resistance di-

vided by two (for two contacts). An identical expression can

be derived for the temperature jump at the right side

(dTcðL; tÞ).

APPENDIX D: ENERGY-AVERAGED TEMPERATURE
PROFILE

Once the energy-dependent forward/backward heat cur-

rents I6
Q ð�Þ are calculated by solving the McKelvey-

Shockley flux equations (Eqs. (1) and (2)), the energy-

dependent temperature profile Tðx; t; �Þ is obtained using

Eqs. (13) and (14). The total (energy-integrated) temperature

is determined using

Ttot x; tð Þ ¼
Ð1

0
T x; t; �ð ÞCV �ð Þ d�Ð1

0
CV �ð Þ d�

; (D1)

where CVð�Þ ¼ � f2Mð�Þ=h vþx ð�Þg½@fBEð�Þ=@T� and Ctot
V

¼
Ð1

0
CVð�Þ d� is the total bulk heat capacity.
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