6,401 research outputs found

    Inertial waves and modes excited by the libration of a rotating cube

    Get PDF
    We report experimental measurements of the flow in a cubic container submitted to a longitudinal libration, i.e. a rotation modulated in time. Velocity fields in a vertical and a horizontal plane are measured in the librating frame using a corotating particle image velocimetry system. When the libration frequency σ0\sigma_0 is smaller than twice the mean rotation rate Ω0\Omega_0, inertial waves can propagate in the interior of the fluid. At arbitrary excitation frequencies σ0<2Ω0\sigma_0<2\Omega_0, the oscillating flow shows two contributions: (i) a basic flow induced by the libration motion, and (ii) inertial wave beams propagating obliquely upward and downward from the horizontal edges of the cube. In addition to these two contributions, inertial modes may also be excited at some specific resonant frequencies. We characterize in particular the resonance of the mode of lowest order compatible with the symmetries of the forcing, noted [2,1,+]. By comparing the measured flow fields to the expected inviscid inertial modes computed numerically [L.R.M. Maas, Fluid Dyn. Res. \textbf{33}, 373 (2003)], we show that only a subset of inertial modes, matching the symmetries of the forcing, can be excited by the libration.Comment: Phys. Fluids (in press

    Regulation and Restoration of Motoneuronal Synaptic Transmission During Neuromuscular Regeneration in the Pulmonate Snail Helisoma trivolvis

    Get PDF
    Regeneration of motor systems involves reestablishment of central control networks, reinnervation of muscle targets by motoneurons, and reconnection of neuromodulatory circuits. Still, how these processes are integrated as motor function is restored during regeneration remains ill defined. Here, we examined the mechanisms underlying motoneuronal regeneration of neuromuscular synapses related to feeding movements in the pulmonate snail Helisoma trivolvis. Neurons B19 and B110, although activated during different phases of the feeding pattern, innervate similar sets of muscles. However, the percentage of muscle fibers innervated, the efficacy of excitatory junction potentials, and the strength of muscle contractions were different for each cell’s specific connections. After peripheral nerve crush, a sequence of transient electrical and chemical connections formed centrally within the buccal ganglia. Neuromuscular synapse regeneration involved a three-phase process: the emergence of spontaneous synaptic transmission (P1), the acquisition of evoked potentials of weak efficacy (P2), and the establishment of functional reinnervation (P3). Differential synaptic efficacy at muscle contacts was recapitulated in cell culture. Differences in motoneuronal presynaptic properties (i.e., quantal content) were the basis of disparate neuromuscular synapse function, suggesting a role for retrograde target influences. We propose a homeostatic model of molluscan motor system regeneration. This model has three restoration events: (1) transient central synaptogenesis during axonal outgrowth, (2) intermotoneuronal inhibitory synaptogenesis during initial neuromuscular synapse formation, and (3) target-dependent regulation of neuromuscular junction formation

    The association between green space and cause-specific mortality in urban New Zealand: an ecological analysis of green space utility

    Get PDF
    &lt;b&gt;Background:&lt;/b&gt; There is mounting international evidence that exposure to green environments is associated with health benefits, including lower mortality rates. Consequently, it has been suggested that the uneven distribution of such environments may contribute to health inequalities. Possible causative mechanisms behind the green space and health relationship include the provision of physical activity opportunities, facilitation of social contact and the restorative effects of nature. In the New Zealand context we investigated whether there was a socioeconomic gradient in green space exposure and whether green space exposure was associated with cause-specific mortality (cardiovascular disease and lung cancer). We subsequently asked what is the mechanism(s) by which green space availability may influence mortality outcomes, by contrasting health associations for different types of green space. &lt;b&gt;Methods:&lt;/b&gt; This was an observational study on a population of 1,546,405 living in 1009 small urban areas in New Zealand. A neighbourhood-level classification was developed to distinguish between usable (i.e., visitable) and non-usable green space (i.e., visible but not visitable) in the urban areas. Negative binomial regression models were fitted to examine the association between quartiles of area-level green space availability and risk of mortality from cardiovascular disease (n = 9,484; 1996 - 2005) and from lung cancer (n = 2,603; 1996 - 2005), after control for age, sex, socio-economic deprivation, smoking, air pollution and population density. &lt;b&gt;Results:&lt;/b&gt; Deprived neighbourhoods were relatively disadvantaged in total green space availability (11% less total green space for a one standard deviation increase in NZDep2001 deprivation score, p &#60; 0.001), but had marginally more usable green space (2% more for a one standard deviation increase in deprivation score, p = 0.002). No significant associations between usable or total green space and mortality were observed after adjustment for confounders. &lt;b&gt;Conclusion&lt;/b&gt; Contrary to expectations we found no evidence that green space influenced cardiovascular disease mortality in New Zealand, suggesting that green space and health relationships may vary according to national, societal or environmental context. Hence we were unable to infer the mechanism in the relationship. Our inability to adjust for individual-level factors with a significant influence on cardiovascular disease and lung cancer mortality risk (e.g., diet and alcohol consumption) will have limited the ability of the analyses to detect green space effects, if present. Additionally, green space variation may have lesser relevance for health in New Zealand because green space is generally more abundant and there is less social and spatial variation in its availability than found in other contexts

    Atomic dynamics in evaporative cooling of trapped alkali atoms in strong magnetic fields

    Get PDF
    We investigate how the nonlinearity of the Zeeman shift for strong magnetic fields affects the dynamics of rf field induced evaporative cooling in magnetic traps. We demonstrate for the 87-Rb and 23-Na F=2 trapping states with wave packet simulations how the cooling stops when the rf field frequency goes below a certain limit (for the 85-Rb F=2 trapping state the problem does not appear). We examine the applicability of semiclassical models for the strong field case as an extension of our previous work [Phys. Rev. A 58, 3983 (1998)]. Our results verify many of the aspects observed in a recent 87^{87}Rb experiment [Phys. Rev. A 60, R1759 (1999)].Comment: 9 pages, RevTex, eps figures embedde

    Realtime calibration of the A4 electromagnetic lead fluoride calorimeter

    Full text link
    Sufficient energy resolution is the key issue for the calorimetry in particle and nuclear physics. The calorimeter of the A4 parity violation experiment at MAMI is a segmented calorimeter where the energy of an event is determined by summing the signals of neighbouring channels. In this case the precise matching of the individual modules is crucial to obtain a good energy resolution. We have developped a calibration procedure for our total absorbing electromagnetic calorimeter which consists of 1022 lead fluoride (PbF_2) crystals. This procedure reconstructs the the single-module contributions to the events by solving a linear system of equations, involving the inversion of a 1022 x 1022-matrix. The system has shown its functionality at beam energies between 300 and 1500 MeV and represents a new and fast method to keep the calorimeter permanently in a well-calibrated state

    Measurement of the Transverse Beam Spin Asymmetry in Elastic Electron Proton Scattering and the Inelastic Contribution to the Imaginary Part of the Two-Photon Exchange Amplitude

    Full text link
    We report on a measurement of the asymmetry in the scattering of transversely polarized electrons off unpolarized protons, A⊄_\perp, at two Q2^2 values of \qsquaredaveragedlow (GeV/c)2^2 and \qsquaredaveragedhighII (GeV/c)2^2 and a scattering angle of 30∘<Ξe<40∘30^\circ < \theta_e < 40^\circ. The measured transverse asymmetries are A⊄_{\perp}(Q2^2 = \qsquaredaveragedlow (GeV/c)2^2) = (\experimentalasymmetry alulowcorr ±\pm \statisticalerrorlowstat_{\rm stat} ±\pm \combinedsyspolerrorlowalucorsys_{\rm sys}) ×\times 10−6^{-6} and A⊄_{\perp}(Q2^2 = \qsquaredaveragedhighII (GeV/c)2^2) = (\experimentalasymme tryaluhighcorr ±\pm \statisticalerrorhighstat_{\rm stat} ±\pm \combinedsyspolerrorhighalucorsys_{\rm sys}) ×\times 10−6^{-6}. The first errors denotes the statistical error and the second the systematic uncertainties. A⊄_\perp arises from the imaginary part of the two-photon exchange amplitude and is zero in the one-photon exchange approximation. From comparison with theoretical estimates of A⊄_\perp we conclude that π\piN-intermediate states give a substantial contribution to the imaginary part of the two-photon amplitude. The contribution from the ground state proton to the imaginary part of the two-photon exchange can be neglected. There is no obvious reason why this should be different for the real part of the two-photon amplitude, which enters into the radiative corrections for the Rosenbluth separation measurements of the electric form factor of the proton.Comment: 4 figures, submitted to PRL on Oct.

    Evidence for Strange Quark Contributions to the Nucleon's Form Factors at Q2Q^2 = 0.108 (GeV/c)2^2

    Full text link
    We report on a measurement of the parity violating asymmetry in the elastic scattering of polarized electrons off unpolarized protons with the A4 apparatus at MAMI in Mainz at a four momentum transfer value of Q2Q^2 = \Qsquare (GeV/c)2^2 and at a forward electron scattering angle of 30∘<Ξe<40∘^\circ < \theta_e < 40^\circ. The measured asymmetry is ALR(e⃗p)A_{LR}(\vec{e}p) = (\Aphys ±\pm \Deltastatstat_{stat} ±\pm \Deltasystsyst_{syst}) ×\times 10−6^{-6}. The expectation from the Standard Model assuming no strangeness contribution to the vector current is A0_0 = (\Azero ±\pm \DeltaAzero) ×\times 10−6^{-6}. We have improved the statistical accuracy by a factor of 3 as compared to our previous measurements at a higher Q2Q^2. We have extracted the strangeness contribution to the electromagnetic form factors from our data to be GEsG_E^s + \FakGMs GMsG_M^s = \GEsGMs ±\pm \DeltaGEsGMs at Q2Q^2 = \Qsquare (GeV/c)2^2. As in our previous measurement at higher momentum transfer for GEsG_E^s + 0.230 GMsG_M^s, we again find the value for GEsG_E^s + \FakGMs GMsG_M^s to be positive, this time at an improved significance level of 2 σ\sigma.Comment: 4 pages, 3 figure

    Measurement of Strange Quark Contributions to the Nucleon's Form Factors at Q^2=0.230 (GeV/c)^2

    Get PDF
    We report on a measurement of the parity-violating asymmetry in the scattering of longitudinally polarized electrons on unpolarized protons at a Q2Q^2 of 0.230 (GeV/c)^2 and a scattering angle of \theta_e = 30^o - 40^o. Using a large acceptance fast PbF_2 calorimeter with a solid angle of \Delta\Omega = 0.62 sr the A4 experiment is the first parity violation experiment to count individual scattering events. The measured asymmetry is A_{phys} =(-5.44 +- 0.54_{stat} +- 0.27_{\rm sys}) 10^{-6}. The Standard Model expectation assuming no strangeness contributions to the vector form factors is A0=(−6.30+−0.43)10−6A_0=(-6.30 +- 0.43) 10^{-6}. The difference is a direct measurement of the strangeness contribution to the vector form factors of the proton. The extracted value is G^s_E + 0.225 G^s_M = 0.039 +- 0.034 or F^s_1 + 0.130 F^s_2 = 0.032 +- 0.028.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Letters on Dec 11, 200

    Accessing directly the properties of fundamental scalars in the confinement and Higgs phase

    Full text link
    The properties of elementary particles are encoded in their respective propagators and interaction vertices. For a SU(2) gauge theory coupled to a doublet of fundamental complex scalars these propagators are determined in both the Higgs phase and the confinement phase and compared to the Yang-Mills case, using lattice gauge theory. Since the propagators are gauge-dependent, this is done in the Landau limit of 't Hooft gauge, permitting to also determine the ghost propagator. It is found that neither the gauge boson nor the scalar differ qualitatively in the different cases. In particular, the gauge boson acquires a screening mass, and the scalar's screening mass is larger than the renormalized mass. Only the ghost propagator shows a significant change. Furthermore, indications are found that the consequences of the residual non-perturbative gauge freedom due to Gribov copies could be different in the confinement and the Higgs phase.Comment: 11 pages, 6 figures, 1 table; v2: one minor error corrected; v3: one appendix on systematic uncertainties added and some minor changes, version to appear in EPJ

    Automatically generated training data for land cover classification with cnns using sentinel-2 images

    Get PDF
    Pixel-wise classification of remote sensing imagery is highly interesting for tasks like land cover classification or change detection. The acquisition of large training data sets for these tasks is challenging, but necessary to obtain good results with deep learning algorithms such as convolutional neural networks (CNN). In this paper we present a method for the automatic generation of a large amount of training data by combining satellite imagery with reference data from an available geospatial database. Due to this combination of different data sources the resulting training data contain a certain amount of incorrect labels. We evaluate the influence of this so called label noise regarding the time difference between acquisition of the two data sources, the amount of training data and the class structure. We combine Sentinel-2 images with reference data from a geospatial database provided by the German Land Survey Office of Lower Saxony (LGLN). With different training sets we train a fully convolutional neural network (FCN) and classify four land cover classes (code Building, Agriculture, Forest, Water/code). Our results show that the errors in the training samples do not have a large influence on the resulting classifiers. This is probably due to the fact that the noise is randomly distributed and thus, neighbours of incorrect samples are predominantly correct. As expected, a larger amount of training data improves the results, especially for the less well represented classes. Other influences are different illuminations conditions and seasonal effects during data acquisition. To better adapt the classifier to these different conditions they should also be included in the training data. © 2020 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
    • 

    corecore