10 research outputs found

    Crossing the phantom divide without phantom matter

    Get PDF
    A class of braneworld models can lead to phantom-like acceleration of the late universe, but without the need for any phantom matter. In the simplest models, the universe contains only cold dark matter and a cosmological constant. We generalize these models by introducing a quintessence field. The new feature in our models is that quintessence leads to a crossing of the phantom divide, w=1w=-1. This is a purely gravitational effect, and there is no phantom instability. Furthermore, the Hubble parameter is always decreasing, and there is no big rip singularity in the future.Comment: 5 pages, 5 figures, revtex

    Large-scale instability in interacting dark energy and dark matter fluids

    Get PDF
    If dark energy interacts with dark matter, this gives a new approach to the coincidence problem. But interacting dark energy models can suffer from pathologies. We consider the case where the dark energy is modelled as a fluid with constant equation of state parameter w. Non-interacting constant-w models are well behaved in the background and in the perturbed universe. But the combination of constant w and a simple interaction with dark matter leads to an instability in the dark sector perturbations at early times: the curvature perturbation blows up on super-Hubble scales. Our results underline how important it is to carefully analyze the relativistic perturbations when considering models of coupled dark energy. The instability that we find has been missed in some previous work where the perturbations were not consistently treated. The unstable mode dominates even if adiabatic initial conditions are used. The instability also arises regardless of how weak the coupling is. This non-adiabatic instability is different from previously discovered adiabatic instabilities on small scales in the strong-coupling regime.Comment: 15 pages, 5 figures. New reference; published versio

    Large-scale instability in interacting dark energy and dark matter fluids

    Get PDF
    If dark energy interacts with dark matter, this gives a new approach to the coincidence problem. But interacting dark energy models can suffer from pathologies. We consider the case where the dark energy is modelled as a fluid with constant equation of state parameter w. Non-interacting constant-w models are well behaved in the background and in the perturbed universe. But the combination of constant w and a simple interaction with dark matter leads to an instability in the dark sector perturbations at early times: the curvature perturbation blows up on super-Hubble scales. Our results underline how important it is to carefully analyze the relativistic perturbations when considering models of coupled dark energy. The instability that we find has been missed in some previous work where the perturbations were not consistently treated. The unstable mode dominates even if adiabatic initial conditions are used. The instability also arises regardless of how weak the coupling is. This non-adiabatic instability is different from previously discovered adiabatic instabilities on small scales in the strong-coupling regime.Comment: 15 pages, 5 figures. New reference; published versio

    Scalar field-perfect fluid correspondence and nonlinear perturbation equations

    Full text link
    The properties of dynamical Dark Energy (DE) and, in particular, the possibility that it can form or contribute to stable inhomogeneities, have been widely debated in recent literature, also in association to a possible coupling between DE and Dark Matter (DM). In order to clarify this issue, in this paper we present a general framework for the study of the nonlinear phases of structure formation, showing the equivalence between two possible descriptions of DE: a scalar field \phi self-interacting through a potential V(\phi) and a perfect fluid with an assigned negative equation of state w(a). This enables us to show that, in the presence of coupling, the mass of DE quanta may increase where large DM condensations are present, so that also DE may partake to the clustering process.Comment: 16 pages, accepted for publication in JCA

    Perturbations of Self-Accelerated Universe

    Get PDF
    We discuss small perturbations on the self-accelerated solution of the DGP model, and argue that claims of instability of the solution that are based on linearized calculations are unwarranted because of the following: (1) Small perturbations of an empty self-accelerated background can be quantized consistently without yielding ghosts. (2) Conformal sources, such as radiation, do not give rise to instabilities either. (3) A typical non-conformal source could introduce ghosts in the linearized approximation and become unstable, however, it also invalidates the approximation itself. Such a source creates a halo of variable curvature that locally dominates over the self-accelerated background and extends over a domain in which the linearization breaks down. Perturbations that are valid outside the halo may not continue inside, as it is suggested by some non-perturbative solutions. (4) In the Euclidean continuation of the theory, with arbitrary sources, we derive certain constraints imposed by the second order equations on first order perturbations, thus restricting the linearized solutions that could be continued into the full nonlinear theory. Naive linearized solutions fail to satisfy the above constraints. (5) Finally, we clarify in detail subtleties associated with the boundary conditions and analytic properties of the Green's functions.Comment: 39 LaTex page

    Correspondence between kinematical backreaction and scalar field cosmologies - the `morphon field'

    Get PDF
    Spatially averaged inhomogeneous cosmologies in classical general relativity can be written in the form of effective Friedmann equations with sources that include backreaction terms. In this paper we propose to describe these backreaction terms with the help of a homogeneous scalar field evolving in a potential; we call it the `morphon field'. This new field links classical inhomogeneous cosmologies to scalar field cosmologies, allowing to reinterpret, e.g., quintessence scenarios by routing the physical origin of the scalar field source to inhomogeneities in the Universe. We investigate a one-parameter family of scaling solutions to the backreaction problem. Subcases of these solutions (all without an assumed cosmological constant) include scale-dependent models with Friedmannian kinematics that can mimic the presence of a cosmological constant or a time-dependent cosmological term. We explicitly reconstruct the scalar field potential for the scaling solutions, and discuss those cases that provide a solution to the Dark Energy and coincidence problems. In this approach, Dark Energy emerges from morphon fields, a mechanism that can be understood through the proposed correspondence: the averaged cosmology is characterized by a weak decay (quintessence) or growth (phantom quintessence) of kinematical fluctuations, fed by `curvature energy' that is stored in the averaged 3-Ricci curvature. We find that the late-time trajectories of those models approach attractors that lie in the future of a state that is predicted by observational constraints.Comment: 36 pages and 6 Figures, matches published version in Class.Quant.Gra

    Notes on interacting holographic dark energy model in a closed universe

    Full text link
    We consider interacting holographic dark energy model in Friedmann Robertson Walker space time with positive spatial curvature and investigate the behavior of curvature parameter and dark energy density in accelerated expanding epoch. We also derive some conditions needed to cross the phantom divide line in this model.Comment: 10 pages, typos corrected, some explanations and references added and updated, accepted for publication in JCA

    Mimicking Lambda with a spin-two ghost condensate

    Full text link
    We propose a simple higher-derivative braneworld gravity model which contains a stable accelerating branch, in the absence of cosmological constant or potential, that can be used to describe the late time cosmic acceleration. This model has similar qualitative features to that of Dvali-Gabadadze-Porrati, such as the recovery of four-dimensional gravity at subhorizon scales, but unlike that case, the graviton zero mode is massless and there are no linearized instabilities. The acceleration rather is driven by bulk gravity in the form of a spin-two ghost condensate. We show that this model can be consistent with cosmological bounds and tests of gravity.Comment: references adde
    corecore