22 research outputs found

    Hyperglycaemic index as a tool to assess glucose control: a retrospective study

    Get PDF
    INTRODUCTION: Critically ill patients may benefit from strict glucose control. An objective measure of hyperglycaemia for assessing glucose control in acutely ill patients should reflect the magnitude and duration of hyperglycaemia, should be independent of the number of measurements, and should not be falsely lowered by hypoglycaemic values. The time average of glucose values above the normal range meets these requirements. METHODS: A retrospective, single-centre study was performed at a 12-bed surgical intensive care unit. From 1990 through 2001 all patients over 15 years, staying at least 4 days, were included. Admission type, sex, age, Acute Physiology and Chronic Health Evaluation II score and outcome were recorded. The hyperglycaemic index (HGI) was defined as the area under the curve above the upper limit of normal (glucose level 6.0 mmol/l) divided by the total length of stay. HGI, admission glucose, mean morning glucose, mean glucose and maximal glucose were calculated for each patient. The relations between these measures and 30-day mortality were determined. RESULTS: In 1779 patients with a median stay in the intensive care unit of 10 days, the 30-day mortality was 17%. A total of 65,528 glucose values were analyzed. Median HGI was 0.9 mmol/l (interquartile range 0.3–2.1 mmol/l) in survivors versus 1.8 mmol/l (interquartile range 0.7–3.4 mmol/l) in nonsurvivors (P < 0.001). The area under the receiver operator characteristic curve was 0.64 for HGI, as compared with 0.61 and 0.62 for mean morning glucose and mean glucose. HGI was the only significant glucose measure in binary logistic regression. CONCLUSION: HGI exhibited a better relation with outcome than other glucose indices. HGI is a useful measure of glucose control in critically ill patients

    Persistent hyperglycemia is an independent predictor of outcome in acute myocardial infarction

    Get PDF
    BACKGROUND: Elevated blood glucose values are a prognostic factor in myocardial infarction (MI) patients. The unfavourable relation between hyperglycemia and outcome is known for admission glucose and fasting glucose after admission. These predictors are single measurements and thus not indicative of overall hyperglycemia. Increased persistent hyperglycemia may better predict adverse events in MI patients. METHODS: In a prospective study of MI patients treated with primary percutaneous coronary intervention (PCI) frequent blood glucose measurements were obtained to investigate the relation between glucose and the occurrence of major adverse cardiac events (MACE) at 30 days follow-up. MACE was defined as death, recurrent infarction, repeat primary coronary intervention, and left ventricular ejection fraction equal to or smaller than 30%. RESULTS: MACE occurred in 89 (21.3%) out 417 patients. In 17 patients (4.1%) it was a fatal event. A mean of 7.4 glucose determinations were available per patient. Mean +/- SD admission glucose was 10.1 +/- 3.7 mmol/L in patients with a MACE versus 9.1 +/- 2.7 mmol/L in event-free patients (P = 0.0024). Mean glucose during the first two days after admission was 9.0 +/- 2.8 mmol/L in patients with MACE compared to 8.1 +/- 2.0 mmol/L in event free patients (P < 0.0001). The area under the receiver operator characteristic curve was 0.64 for persistent hyperglycemia and 0.59 for admission glucose. Persistent hyperglycemia emerged as a significant independent predictor (P < 0.001). CONCLUSION: Persistent hyperglycemia in MI has a stronger relation with 30-day MACE than elevated glucose at admission

    HLA-DR expression on monocytes and systemic inflammation in patients with ruptured abdominal aortic aneurysms

    Get PDF
    INTRODUCTION: Mortality from ruptured abdominal aortic aneurysms (RAAA) remains high. Severe systemic inflammation, leading to multi-organ failure, often occurs in these patients. In this study we describe the level of HLA-DR expression in a consecutive group of patients following surgery for RAAA and compare results between survivors and non-survivors. A similar comparison is made for IL-6 and IL-10 levels and Sequential Organ Failure Assessment (SOFA) scores. METHODS: This is a prospective observational study. Patients with RAAA were prospectively analysed. Blood samples were collected on days 1, 3, 5, 7, 10 and 14. The fraction of CD-14 positive monocytes expressing HLA-DR was measured by flow-cytometry. IL-6 and IL-10 levels were measured by ELISA. RESULTS: The study included 30 patients with a median age of 70 years, of which 27 (90%) were men. Six patients died from multiple organ failure, all other patients survived. The SOFA scores were significantly higher in non-survivors on days 1 through 14. HLA-DR expression on monocytes was significantly lower on days 3, 5, 7, 10 and 14 in non-survivors. IL-6 and IL-10 levels were significantly higher in non-survivors on day 1 and days 1 and 3, respectively. CONCLUSION: HLA-DR expression on monocytes was decreased, especially in non-survivors. All patients with RAAA displayed a severe inflammatory and anti-inflammatory response with an increased production of IL-6 and IL-10. Poor outcome is associated with high levels of IL-6 and IL-10 and a high SOFA score in the first three days after surgery, while low levels of HLA-DR expression are observed from day three after RAAA repair

    The impact of a reduced dose of dexamethasone on glucose control after coronary artery bypass surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intensive insulin therapy to maintain normoglycemia after cardiac surgery reduces morbidity and mortality. We investigated the magnitude and duration of hyperglycemia caused by dexamethasone administered after cardiopulmonary bypass.</p> <p>Methods</p> <p>A single-center before-after cohort study was performed. All consecutive patients undergoing coronary artery bypass grafting with cardiopulmonary bypass during a 6-month period were included. Insulin administration was guided by a sliding scale protocol. Halfway the observation period, the dexamethasone protocol was changed. The single dose (1D) group received a pre-operative dose of dexamethasone of 1 mg/kg. The double dose group (2D) received an additional dose of 0.5 mg/kg of dexamethasone post-operatively at ICU admission.</p> <p>Results</p> <p>We included 116 patients in the 1D group and 158 patients in the 2D group. There were no significant baseline differences between the groups. Median Euroscore was 5. In univariable analysis, the glucose level was different between groups 1D and 2D at 4, 6, 9, 12 and 24 hours after ICU admission (all p < 0.001). Insulin infusion was higher in the 1D group. Corrected for insulin dose in multivariable linear analysis, the difference in glucose between the 1D and 2D groups was 1.5 mmol/L (95% confidence interval 1.0–2.0, p < 0.001) 12 hours after ICU admission.</p> <p>Conclusion</p> <p>Dexamethasone exerts a hyperglycemic effect in cardiac surgery patients. Patients receiving high-dose corticosteroid therapy should be monitored and treated more intensively for hyperglycemic episodes.</p

    Clinical correlates of arterial lactate levels in patients with ST-segment elevation myocardial infarction at admission: a descriptive study

    Get PDF
    Introduction: Blood lactate measurements can be used as an indicator of hemodynamic impairment and relate to mortality in various forms of shock. Little is known at the moment concerning the clinical correlates of systemic lactate in patients with ST-segment elevation myocardial infarction (STEMI).Methods: To assess the relation of systemic arterial lactate levels in STEMI patients with clinical correlates at presentation in the catheterization laboratory, we measured arterial lactate levels with a rapid point-of-care technique, immediately following femoral sheath insertion. The study population (n = 1,176) was divided into tertiles with lactate levels ≤1.1 (n = 410), 1.2 to 1.7 (n = 398) and ≥1.8 mmol/l (n = 368). We compared both baseline characteristics and outcome measures of the three lactate groups.Results: Factors independently associated with higher lactate levels were hypotension, heart rate, thrombolysis in myocardial infarction (TIMI) flow 0 to 1, diabetes and non-smoking. Mortality at 30 days in the three groups was 2.0%, 1.5% and 6.5%. The latter group also showed lower blush grades and greater enzymatic infarct sizes. An intra aortic balloon pump (IABP) was used more frequently in patients with higher lactate levels (4.2%, 7.6% and 14.7%).Conclusions: In STEMI patients, impaired hemodynamics, worse TIMI flow and non-smoking were related to increased arterial lactate levels. Higher lactate levels were independently related with 30-day mortality and an overall worse response to percutaneous coronary intervention (PCI). In particular, acute mortality was related to admission lactates ≥1.8 mmol/L. Point-of-care measurement of arterial lactate at admission in patients with STEMI has the potential to improve acute risk stratification

    Design and implementation of GRIP: a computerized glucose control system at a surgical intensive care unit

    Get PDF
    BACKGROUND: Tight glucose control by intensive insulin therapy has become a key part of critical care and is an important field of study in acute coronary care. A balance has to be found between frequency of measurements and the risk of hypoglycemia. Current nurse-driven protocols are paper-based and, therefore, rely on simple rules. For safety and efficiency a computer decision support system that employs complex logic may be superior to paper protocols. METHODS: We designed and implemented GRIP, a stand-alone Java computer program. Our implementation of GRIP will be released as free software. Blood glucose values measured by a point-of-care analyzer were automatically retrieved from the central laboratory database. Additional clinical information was asked from the nurse and the program subsequently advised a new insulin pump rate and glucose sampling interval. RESULTS: Implementation of the computer program was uneventful and successful. GRIP treated 179 patients for a total of 957 patient-days. Severe hypoglycemia (< 2.2 mmol/L) only occurred once due to human error. With a median (IQR) of 4.9 (4.2 – 6.2) glucose measurements per day the median percentage of time in which glucose fell in the target range was 78%. Nurses rated the program as easy to work with and as an improvement over the preceding paper protocol. They reported no increase in time spent on glucose control. CONCLUSION: A computer driven protocol is a safe and effective means of glucose control at a surgical ICU. Future improvements in the recommendation algorithm may further improve safety and efficiency

    Implementation and evaluation of a nurse-centered computerized potassium regulation protocol in the intensive care unit - a before and after analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Potassium disorders can cause major complications and must be avoided in critically ill patients. Regulation of potassium in the intensive care unit (ICU) requires potassium administration with frequent blood potassium measurements and subsequent adjustments of the amount of potassium administrated. The use of a potassium replacement protocol can improve potassium regulation. For safety and efficiency, computerized protocols appear to be superior over paper protocols. The aim of this study was to evaluate if a computerized potassium regulation protocol in the ICU improved potassium regulation.</p> <p>Methods</p> <p>In our surgical ICU (12 beds) and cardiothoracic ICU (14 beds) at a tertiary academic center, we implemented a nurse-centered computerized potassium protocol integrated with the pre-existent glucose control program called GRIP (Glucose Regulation in Intensive Care patients). Before implementation of the computerized protocol, potassium replacement was physician-driven. Potassium was delivered continuously either by central venous catheter or by gastric, duodenal or jejunal tube. After every potassium measurement, nurses received a recommendation for the potassium administration rate and the time to the next measurement. In this before-after study we evaluated potassium regulation with GRIP. The attitude of the nursing staff towards potassium regulation with computer support was measured with questionnaires.</p> <p>Results</p> <p>The patient cohort consisted of 775 patients before and 1435 after the implementation of computerized potassium control. The number of patients with hypokalemia (<3.5 mmol/L) and hyperkalemia (>5.0 mmol/L) were recorded, as well as the time course of potassium levels after ICU admission. The incidence of hypokalemia and hyperkalemia was calculated. Median potassium-levels were similar in both study periods, but the level of potassium control improved: the incidence of hypokalemia decreased from 2.4% to 1.7% (P < 0.001) and hyperkalemia from 7.4% to 4.8% (P < 0.001). Nurses indicated that they considered computerized potassium control an improvement over previous practice.</p> <p>Conclusions</p> <p>Computerized potassium control, integrated with the nurse-centered GRIP program for glucose regulation, is effective and reduces the prevalence of hypo- and hyperkalemia in the ICU compared with physician-driven potassium regulation.</p

    Boussignac continuous positive airway pressure for the management of acute cardiogenic pulmonary edema: prospective study with a retrospective control group

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Continuous positive airway pressure (CPAP) treatment for acute cardiogenic pulmonary edema can have important benefits in acute cardiac care. However, coronary care units are usually not equipped and their personnel not adequately trained for applying CPAP with mechanical ventilators. Therefore we investigated in the coronary care unit setting the feasibility and outcome of the simple Boussignac mask-CPAP (BCPAP) system that does not need a mechanical ventilator.</p> <p>Methods</p> <p>BCPAP was introduced in a coronary care unit where staff had no CPAP experience. All consecutive patients transported to our hospital with acute cardiogenic pulmonary edema, a respiratory rate > 25 breaths/min and a peripheral arterial oxygen saturation of < 95% while receiving oxygen, were included in a prospective BCPAP group that was compared with a historical control group that received conventional treatment with oxygen alone.</p> <p>Results</p> <p>During the 2-year prospective BCPAP study period 108 patients were admitted with acute cardiogenic pulmonary edema. Eighty-four of these patients (78%) were treated at the coronary care unit of which 66 (61%) were treated with BCPAP. During the control period 66 patients were admitted over a 1-year period of whom 31 (47%) needed respiratory support in the intensive care unit. BCPAP treatment was associated with a reduced hospital length of stay and fewer transfers to the intensive care unit for intubation and mechanical ventilation. Overall estimated savings of approximately € 3,800 per patient were achieved with the BCPAP strategy compared to conventional treatment.</p> <p>Conclusion</p> <p>At the coronary care unit, BCPAP was feasible, medically effective, and cost-effective in the treatment of acute cardiogenic pulmonary edema. Endpoints included mortality, coronary care unit and hospital length of stay, need of ventilatory support, and cost (savings).</p

    Trial design: Computer guided normal-low versus normal-high potassium control in critically ill patients: Rationale of the GRIP-COMPASS study

    Get PDF
    Background: Potassium depletion is common in hospitalized patients and can cause serious complications such as cardiac arrhythmias. In the intensive care unit (ICU) the majority of patients require potassium suppletion. However, there are no data regarding the optimal control target in critically ill patients. After open-heart surgery, patients have a strongly increased risk of atrial fibrillation or atrial flutter (AFF). In a novel trial design, we examined if in these patients different potassium control-targets within the normal range may have different effects on the incidence of AFF. Methods/Design: The "computer-driven Glucose and potassium Regulation program in Intensive care Patients with COMparison of PotASSium targets within normokalemic range (GRIP-COMPASS) trial" is a single-center prospective trial in which a total of 1200 patients are assigned to either a potassium control-target of 4.0 mmol/L or 4.5 mmol/L in consecutive alternating blocks of 50 patients each. Potassium levels are regulated by the computer-assisted potassium suppletion algorithm called GRIP-II (Glucose and potassium regulation for Intensive care Patients). Primary endpoint is the in-hospital incidence of AFF after cardiac surgery. Secondary endpoints are: in-hospital AFF in medical patients or patients after non-cardiac surgery, actually achieved potassium levels and their variation, electrolyte and glucose levels, potassium and insulin requirements, cumulative fluid balance, (ICU) length of stay, ICU mortality, hospital mortality and 90-day mortality. Discussion: The GRIP-COMPASS trial is the first controlled clinical trial to date that compares potassium targets. Other novel methodological elements of the study are that it is performed in ICU patients where both targets are within the normal range and that a computer-assisted potassium suppletion algorithm is used

    The impact of glucose-insulin-potassium infusion in acute myocardial infarction on infarct size and left ventricular ejection fraction [ISRCTN56720616]

    Get PDF
    BACKGROUND: Favorable clinical outcomes have been observed with glucose-insulin-potassium infusion (GIK) in acute myocardial infarction (MI). The mechanisms of this beneficial effect have not been delineated clearly. GIK has metabolic, anti-inflammatory and profibrinolytic effects and it may preserve the ischemic myocardium. We sought to assess the effect of GIK infusion on infarct size and left ventricular function, as part of a randomized controlled trial. METHODS: Patients (n = 940) treated for acute MI by primary percutaneous coronary intervention (PCI) were randomized to GIK infusion or no infusion. Endpoints were the creatinine kinase MB-fraction (CK-MB) and left ventricular ejection fraction (LVEF). CK-MB levels were determined 0, 2, 4, 6, 24, 48, 72 and 96 hours after admission and the LVEF was measured before discharge. RESULTS: There were no differences between the two groups in the time course or magnitude of CK-MB release: the peak CK-MB level was 249 ± 228 U/L in the GIK group and 240 ± 200 U/L in the control group (NS). The mean LVEF was 43.7 ± 11.0 % in the GIK group and 42.4 ± 11.7% in the control group (P = 0.12). A LVEF ≤ 30% was observed in 18% in the controls and in 12% of the GIK group (P = 0.01). CONCLUSION: Treatment with GIK has no effect on myocardial function as determined by LVEF and by the pattern or magnitude of enzyme release. However, left ventricular function was preserved in GIK treated patients
    corecore