15 research outputs found

    Model for the hyperfine structure of electronically-excited KCs{\rm KCs} molecules

    Full text link
    A model for determining the hyperfine structure of the excited electronic states of diatomic bialkali heteronuclear molecules is formulated from the atomic hyperfine interactions, and is applied to the case of bosonic 39^{39}KCs and fermionic 40^{40}KCs molecules. The hyperfine structure of the potential energy curves of the states correlated to the K(4s\,^2S_{1/2})+Cs(6p\,^2P_{1/2,3/2}) dissociation limits is described in terms of different coupling schemes depending on the internuclear distance RR. These results provide the first step in the calculation of the hyperfine structure of rovibrational levels of these excited molecular states in the perspective of the identification of efficient paths for creating ultracold ground-state KCs molecules.Comment: 12 pages, 15 figure

    Modified Zakharov equations for plasmas with a quantum correction

    Get PDF
    Quantum Zakharov equations are obtained to describe the nonlinear interaction between quantum Langmuir waves and quantum ion-acoustic waves. These quantum Zakharov equations are applied to two model cases, namely the four-wave interaction and the decay instability. In the case of the four-wave instability, sufficiently large quantum effects tend to suppress the instability. For the decay instability, the quantum Zakharov equations lead to results similar to those of the classical decay instability except for quantum correction terms in the dispersion relations. Some considerations regarding the nonlinear aspects of the quantum Zakharov equations are also offered.Comment: 4 figures. Accepted for publication in Physics of Plasmas (2004

    Nyquist method for Wigner-Poisson quantum plasmas

    Get PDF
    By means of the Nyquist method, we investigate the linear stability of electrostatic waves in homogeneous equilibria of quantum plasmas described by the Wigner-Poisson system. We show that, unlike the classical Vlasov-Poisson system, the Wigner-Poisson case does not necessarily possess a Penrose functional determining its linear stability properties. The Nyquist method is then applied to a two-stream distribution, for which we obtain an exact, necessary and sufficient condition for linear stability, as well as to a bump-in-tail equilibrium.Comment: 6 figure

    Formation of ultracold RbCs molecules by photoassociation

    Full text link
    The formation of ultracold metastable RbCs molecules is observed in a double species magneto-optical trap through photoassociation below the ^85Rb(5S_1/2)+^133Cs(6P_3/2) dissociation limit followed by spontaneous emission. The molecules are detected by resonance enhanced two-photon ionization. Using accurate quantum chemistry calculations of the potential energy curves and transition dipole moment, we interpret the observed photoassociation process as occurring at short internuclear distance, in contrast with most previous cold atom photoassociation studies. The vibrational levels excited by photoassociation belong to the 5th 0^+ or the 4th 0^- electronic states correlated to the Rb(5P_1/2,3/2)+Cs(6S_1/2) dissociation limit. The computed vibrational distribution of the produced molecules shows that they are stabilized in deeply bound vibrational states of the lowest triplet state. We also predict that a noticeable fraction of molecules is produced in the lowest level of the electronic ground state

    Electronic and Thermoelectric Properties of Li-Based Half-Heusler Alloys: A DFT Study

    No full text
    In this paper, we have studied the electronic, elastic and thermoelectric properties of the half-Heusler LiCrZ (Z = C, N, Si, and P) materials in Type II phase, in this structure the atomic occupations are X (1/2,1/2,1/2), Y (0,0,0) and Z(1/4,1/4,1/4). The ferromagnetic state of Type II structure was found to be the most stable phase for all studied alloys. After calculating the elastic constants, we found out that the conditions of mechanical stability were verified only for LiCrSi and LiCrP alloys in Type II phase, at both equilibrium a0 and half metallic ahm lattice constants, which indicates that these two compounds can be synthesized experimentally. We should also mention that the half metallic behavior in Type II structure, for LiCrSi and LiCrP compounds, was obtained by straining the equilibrium lattice constants by 2% and 6%, respectively. At ahm, these two systems were identified to be true half metals due to their complete spin polarization and integer value of total magnetic moment. These last ones have reached 3ÎĽB per unit cell when Z = Si, and 4ÎĽB when Z = P. Using the mean field approximation (MFA), the Curie temperatures of Type II structure were also determined, where the values are estimated to be 456.2 K and 302.8 K, respectively. Finally, the thermoelectric performance has been explored by the classical Boltzmann theory. At low temperatures, the figure of merit has reached 0.73 and 0.93 for LiCrSi and LiCrP, respectively. The considerable ZT values and all calculated physical properties make these two systems promising candidates for thermoelectric applications

    Theoretical Study of the Electronic Properties of X2YZ (X = Fe, Co; Y = Zr, Mo; Z = Ge, Sb) Ternary Heusler: Abinitio Study

    No full text
    In the purpose of exploring new Heusler alloys with different magnetic applications, we have employed first principles calculations method within density functional theory. After checking the structural stability of X2YZ Heusler alloys (X = Fe, Co; Y =Zr, Mo and Z = Ge, Sb), we found that Cu2MnAl type structure is more favorable for most compounds except for X2MoGe and Co2MoSb, were the Hg2CuTi structure is energetically more stable. The trends in magnetic and electronic structures can be predicted by the structure types as well as the different kinds of hybridizations between the constituents. Among the two series only two compounds were identified to be true half metals with potential applications in spintronic devices. While one compound was classified as a nonmagnetic semiconductor with a small band gap. For the rest of materials, we found that the metallic behavior is dominant. These materials show possible interesting features in technical applications as well. The effect of distortion on the magnetic properties of Co2ZrGe and Fe2ZrSb showed that the half metallic character was preserved within a moderate range of volume changes, which makes it possible to grow these materials as thin films with modern techniques

    Optical Shielding of Destructive Chemical Reactions between Ultracold Ground-State NaRb Molecules

    No full text
    We propose a method to suppress the chemical reactions between ultracold bosonic ground-state 23^{23}Na87^{87}Rb molecules based on optical shielding. By applying a laser with a frequency blue-detuned from the transition between the lowest rovibrational level of the electronic ground state X1Σ+(vX=0,jX=0)X^1\Sigma^+ (v_X=0, j_X=0), and the long-lived excited level b3Π0(vb=0,jb=1)b^3\Pi_0 (v_b=0, j_b=1), the long-range dipole-dipole interaction between the colliding molecules can be engineered, leading to a dramatic suppression of reactive and photoinduced inelastic collisions, for both linear and circular laser polarizations. We demonstrate that the spontaneous emission from b3Π0(vb=0,jb=1)b^3\Pi_0 (v_b=0, j_b=1) does not deteriorate the shielding process. This opens the possibility for a strong increase of the lifetime of cold molecule traps, and for an efficient evaporative cooling. We also anticipate that the proposed mechanism is valid for alkali-metal diatomics with sufficiently large dipole-dipole interactions
    corecore