15 research outputs found
Model for the hyperfine structure of electronically-excited molecules
A model for determining the hyperfine structure of the excited electronic
states of diatomic bialkali heteronuclear molecules is formulated from the
atomic hyperfine interactions, and is applied to the case of bosonic KCs
and fermionic KCs molecules. The hyperfine structure of the potential
energy curves of the states correlated to the
K(4s\,^2S_{1/2})+Cs(6p\,^2P_{1/2,3/2}) dissociation limits is described in
terms of different coupling schemes depending on the internuclear distance .
These results provide the first step in the calculation of the hyperfine
structure of rovibrational levels of these excited molecular states in the
perspective of the identification of efficient paths for creating ultracold
ground-state KCs molecules.Comment: 12 pages, 15 figure
Modified Zakharov equations for plasmas with a quantum correction
Quantum Zakharov equations are obtained to describe the nonlinear interaction
between quantum Langmuir waves and quantum ion-acoustic waves. These quantum
Zakharov equations are applied to two model cases, namely the four-wave
interaction and the decay instability. In the case of the four-wave
instability, sufficiently large quantum effects tend to suppress the
instability. For the decay instability, the quantum Zakharov equations lead to
results similar to those of the classical decay instability except for quantum
correction terms in the dispersion relations. Some considerations regarding the
nonlinear aspects of the quantum Zakharov equations are also offered.Comment: 4 figures. Accepted for publication in Physics of Plasmas (2004
Nyquist method for Wigner-Poisson quantum plasmas
By means of the Nyquist method, we investigate the linear stability of
electrostatic waves in homogeneous equilibria of quantum plasmas described by
the Wigner-Poisson system. We show that, unlike the classical Vlasov-Poisson
system, the Wigner-Poisson case does not necessarily possess a Penrose
functional determining its linear stability properties. The Nyquist method is
then applied to a two-stream distribution, for which we obtain an exact,
necessary and sufficient condition for linear stability, as well as to a
bump-in-tail equilibrium.Comment: 6 figure
Formation of ultracold RbCs molecules by photoassociation
The formation of ultracold metastable RbCs molecules is observed in a double
species magneto-optical trap through photoassociation below the
^85Rb(5S_1/2)+^133Cs(6P_3/2) dissociation limit followed by spontaneous
emission. The molecules are detected by resonance enhanced two-photon
ionization. Using accurate quantum chemistry calculations of the potential
energy curves and transition dipole moment, we interpret the observed
photoassociation process as occurring at short internuclear distance, in
contrast with most previous cold atom photoassociation studies. The vibrational
levels excited by photoassociation belong to the 5th 0^+ or the 4th 0^-
electronic states correlated to the Rb(5P_1/2,3/2)+Cs(6S_1/2) dissociation
limit. The computed vibrational distribution of the produced molecules shows
that they are stabilized in deeply bound vibrational states of the lowest
triplet state. We also predict that a noticeable fraction of molecules is
produced in the lowest level of the electronic ground state
Electronic and Thermoelectric Properties of Li-Based Half-Heusler Alloys: A DFT Study
In this paper, we have studied the electronic, elastic and thermoelectric properties of the half-Heusler LiCrZ (Z = C, N, Si, and P) materials in Type II phase, in this structure the atomic occupations are X (1/2,1/2,1/2), Y (0,0,0) and Z(1/4,1/4,1/4). The ferromagnetic state of Type II structure was found to be the most stable phase for all studied alloys. After calculating the elastic constants, we found out that the conditions of mechanical stability were verified only for LiCrSi and LiCrP alloys in Type II phase, at both equilibrium a0 and half metallic ahm lattice constants, which indicates that these two compounds can be synthesized experimentally. We should also mention that the half metallic behavior in Type II structure, for LiCrSi and LiCrP compounds, was obtained by straining the equilibrium lattice constants by 2% and 6%, respectively. At ahm, these two systems were identified to be true half metals due to their complete spin polarization and integer value of total magnetic moment. These last ones have reached 3ÎĽB per unit cell when Z = Si, and 4ÎĽB when Z = P. Using the mean field approximation (MFA), the Curie temperatures of Type II structure were also determined, where the values are estimated to be 456.2 K and 302.8 K, respectively. Finally, the thermoelectric performance has been explored by the classical Boltzmann theory. At low temperatures, the figure of merit has reached 0.73 and 0.93 for LiCrSi and LiCrP, respectively. The considerable ZT values and all calculated physical properties make these two systems promising candidates for thermoelectric applications
Theoretical Study of the Electronic Properties of X2YZ (X = Fe, Co; Y = Zr, Mo; Z = Ge, Sb) Ternary Heusler: Abinitio Study
In the purpose of exploring new Heusler alloys with different magnetic applications, we have employed first principles calculations method within density functional theory. After checking the structural stability of X2YZ Heusler alloys (X = Fe, Co; Y =Zr, Mo and Z = Ge, Sb), we found that Cu2MnAl type structure is more favorable for most compounds except for X2MoGe and Co2MoSb, were the Hg2CuTi structure is energetically more stable. The trends in magnetic and electronic structures can be predicted by the structure types as well as the different kinds of hybridizations between the constituents. Among the two series only two compounds were identified to be true half metals with potential applications in spintronic devices. While one compound was classified as a nonmagnetic semiconductor with a small band gap. For the rest of materials, we found that the metallic behavior is dominant. These materials show possible interesting features in technical applications as well. The effect of distortion on the magnetic properties of Co2ZrGe and Fe2ZrSb showed that the half metallic character was preserved within a moderate range of volume changes, which makes it possible to grow these materials as thin films with modern techniques
Hyperfine structure of electronically-excited states of the 39 K 133 Cs molecule
International audienc
Optical Shielding of Destructive Chemical Reactions between Ultracold Ground-State NaRb Molecules
We propose a method to suppress the chemical reactions between ultracold
bosonic ground-state NaRb molecules based on optical shielding.
By applying a laser with a frequency blue-detuned from the transition between
the lowest rovibrational level of the electronic ground state , and the long-lived excited level ,
the long-range dipole-dipole interaction between the colliding molecules can be
engineered, leading to a dramatic suppression of reactive and photoinduced
inelastic collisions, for both linear and circular laser polarizations. We
demonstrate that the spontaneous emission from does
not deteriorate the shielding process. This opens the possibility for a strong
increase of the lifetime of cold molecule traps, and for an efficient
evaporative cooling. We also anticipate that the proposed mechanism is valid
for alkali-metal diatomics with sufficiently large dipole-dipole interactions