38 research outputs found

    Developing the lithotectonic framework and model for sulphide mineralization in the Jebilet Massif, Morocco: implications for regional exploration

    Get PDF
    The central Jebilet massif, part of the North African Variscan Belt, hosts significant polymetallic sulphide mineralization. It is generally considered syngenetic and has many features of volcanogenic massive sulphide (VMS) mineralization. However, some characteristics are not compatible with a classic VMS model and two alternative scenarios for formation have been proposed. Our preliminary research favours a complex, multi-stage development of the sulphide deposits. Uncertainty as to the critical processes controlling the mineralization and lack of agreement on a genetic model inhibit regional exploration. We identify the key knowledge gaps regarding sulphide mineralization in the central Jebilet and outline a research program to address these, with the ultimate aim of improving regional mineral exploration targeting and unlocking the economic potential of this relatively undeveloped district

    Massive sulphide deposits of the Central Jebilet Massif, Morocco

    Get PDF
    The Central Jebilet massif, in the Marrakech region of Morocco, comprises a block of Carboniferous sedimentary rocks that were extensively deformed and metamorphosed during the Variscan orogeny. This block, and its extension to the south of Marrakech (the Guemassa massif), are characterised by bimodal intrusive magmatism and abundant massive sulphide deposits that represent a major Cu-Pb-Zn resource. Mining is currently taking place at the Draa Sfar and Hajjar mines. Previously worked deposits at Kettara, Roc Blanc and Koudiat Aicha are not currently being exploited, but have extensive reserves remaining, and prospects such as Laachach and Ben Slimane are being explored

    Characterization of Weathering Processes of the Giant Copper Deposit of Tizert (Igherm Inlier, Anti-Atlas, Morocco)

    Get PDF
    The giant Tizert copper deposit is considered as the largest copper resource in the western Anti-Atlas (Morocco). The site is characterized by Cu mineralization carried by malachite, chalcocite, covellite, bornite and chalcopyrite; azurite is not observed. The host rocks are mainly limestones (Formation of Tamjout Dolomite) and sandstones/siltstones (Basal Series) of the Ediacaran/Cambrian transition. The supergene enrichment is most likely related to episodes of uplift/doming (last event since 30 Ma), which triggered the exhumation of primary/hypogene mineralization (chalcopyrite, pyrite, galena, chalcocite I and bornite I), generating their oxidation and the precipitation of secondary/supergene sulfides, carbonates and Fe-oxyhydroxides. The Tizert supergene deposit mainly consists of (i) a residual patchwork of laterite rich in Fe-oxyhydroxides; (ii) a saprolite rich in malachite, or “green oxide zone” where primary structures such as stratification are preserved; (iii) a cementation zone containing secondary sulfides (covellite, chalcocite II and bornite II). The abundance of Cu carbonates results from the rapid neutralization of acidic meteoric fluids, due to oxidation of primary sulfides, by carbonate host rocks. Chlorite is also involved in the neutralization processes in the sandstones/siltstones of the Basal Series, in which supergene clays, such as kaolinite and smectites, subsequently precipitated. At Tizert, as can be highlighted in other supergene Cu-deposits around the world, azurite is absent due to low pCO2 and relatively high pH conditions. In addition to copper, Ag enrichment is also observed in weathered rocks; Fe-oxyhydroxides contain high Zn, As, and Pb contents. However, these secondary enrichments are quite low compared to Cu in the whole Tizert site, which is therefore, considered as relatively homogeneous

    The Moroccan Massive Sulphide deposits: evidence for a polyphase mineralization

    Get PDF
    This work provides an overview of the geological, geochemical, and metallogenic data available up to date on the Moroccan massive sulphide deposits, including some new results, and then discusses the evidences for the epigenetic and syngenetic hypotheses. All of the ore deposits are located within a crustal block located at the intersection between two major shear zones and are characterized by a sustained and long-lived magmatic activity. The ore deposits are located within second-order shear zones, which played an important role in controlling the geometry of the mineralization. The mineralization lacks the unequivocal textural and structural features that are indicative of a sedimentary or diagenetic origin, and a syntectonic to late-tectonic pyrite-rich assemblage is superimposed on an earlier, pretectonic to syntectonic pyrrhotite-rich mineralization. Each deposit has a distinctive pyrrhotite sulfur isotopic signature, while the sulfur isotopic signature of pyrite is similar in all deposits. Lead isotopes suggest a shift from a magmatic source during the pyrrhotite-rich mineralization to a source that is inherited from the host shales during the pyrite-rich mineralization. The O/H isotopic signatures record a predominance of fluids of metamorphic derivation. These results are consistent with a model in which an earlier pyrrhotite-rich mineralization, which formed during transtension, was deformed and then remobilized to pyrite-rich mineralization during transpressio

    The chromitites of the Neoproterozoic Bou Azzer ophiolite (Central Anti-Atlas, Morocco) revisited

    Get PDF
    The Neoproterozoic Bou Azzer ophiolite in the Moroccan Anti-Atlas Panafrican belt hosts numerous chromitite orebodies within the peridotite section of the oceanic mantle. The chromitites are strongly affected by serpentinization and metamorphism, although they still preserve igneous relicts amenable for petrogenetic interpretation. The major, minor and trace element composition of unaltered chromite cores reveal two compositional groups: intermediate-Cr (Cr# = 0.60 - 0.74) and high-Cr (Cr# = 0.79 - 0.84) and estimates of parental melt compositions suggest crystallization from pulses of fore-arc basalts (FAB) and boninitic melts, respectively, that infiltrated the oceanic supra-subduction zone (SSZ) mantle. A platinum group elements (PGE) mineralization dominated by Ir-Ru-Os is recognized in the chromitites, which has its mineralogical expression in abundant inclusions of Os-Ir alloys and coexisting magmatic laurite (RuS2) and their products of metamorphic alteration. Unusual mineral phases in chromite, not previously reported in this ophiolite, include super-reduced and/or nominally ultra-high pressure minerals moissanite (SiC), native Cu and silicates (oriented clinopyroxene lamellae), but "exotic" zircon and diaspore have also been identified. We interpret that clinopyroxene lamellae have a magmatic origin, whereas super-reduced phases originated during serpentinization processes and diaspore is linked to late circulation of low-silica fluids related to rodingitization. Zircon grains, on the other hand, with apatite and serpentine inclusions, could either have formed after the interaction of chromitite with mantlederived melts or could represent subducted detrital sediments later incorporated into the chromitites. We offer a comparison of the Bou Azzer chromitites with other Precambrian ophiolitic chromitites worldwide, which are rather scarce in the geological record. The studied chromitites are very similar to the Neoproterozoic chromitites reported in the Arabian-Nubian shield, which are also related to the Panafrican orogeny. Thus, we conclude that the Bou Azzer chromitites formed in a subduction-initiation geodynamic setting with two-stages of evolution, with formation of FAB-derived intermediate-Cr chromitites in the early stage and formation of boninite-derived high-Cr chromitites in the late stage
    corecore