23 research outputs found

    Anti-inflammatory and anticancer effects of flavonol glycosides from Diplotaxis harra through GSK3β regulation in intestinal cells

    No full text
    International audienceContext and objective: Diplotaxis harra (Forssk.) Boiss. (Brassicaceae) is traditionally used as an antidiabetic, anti-inflammatory or anticancer agent. In these pathologies, the glycogen synthase kinase 3 b (GSK3b) is overactivated and represents an interesting therapeutic target. Several flavonoids can inhibit GSK3b and the purpose of this study was to search for the compounds in Diplotaxis harra which are able to modulate GSK3b. Materials and methods: Methanol extracts from D. harra flowers were prepared and the bio-guided fractionation of their active compounds was performed using inflammatory [protease-activated receptor 2 (PAR2)-stimulated IEC6 cells] and cancer (human Caco-2 cell line) intestinal cells. 50–100 lg/mL of fractions or compounds purified by HPLC were incubated with cells whose inhibited form of GSK3b (Pser9 GSK3b) and survival were analyzed by Western blot at 1 h and colorimetric assay at 24 h, respectively. LC-UV-MS profiles and MS-MS spectra were used for the characterization of extracts and flavonoids-enriched fractions, and the identification of pure flavonoids was achieved by MS and NMR analysis. Results: The methanol extract from D. harra flowers and its flavonoid-enriched fraction inhibit GSK3b in PAR2-stimulated IEC6 cells. GSK3b inhibition by the flavonoid-enriched D. harra fraction was dependent on PKC activation. The flavonoid-enriched D. harra fraction and its purified compound isorhamnetin-3,7- di-O-glucoside induced a 20% decrease of PAR2-stimulated IEC6 and Caco-2 cell survival. Importantly, normal cells (non-stimulated IEC6 cells) were spared by these treatments. Conclusion: This work indicates that flavonoids from D. harra display cytotoxic activity against inflammatory and cancer intestinal cells which could depend on GSK3b inhibition

    Focal adhesion kinase splice variants maintain primitive acute myeloid leukemia cells through altered wnt signaling.

    No full text
    International audienceFocal adhesion kinase (FAK) activity contributes to many advanced cancer phenotypes, but little is known about its role in human acute myeloid leukemia (AML). Here, we show that FAK splice variants are abnormally expressed in the primitive leukemic cells of poor prognosis AML patients. In the CD34(+) 38(-) 123(+) long-term culture-initiating cell-enriched leukemic cells of these patients, FAK upregulates expression of Frizzled-4 and phosphorylates Pyk2 to enable the required association of Pyk2 with the Wnt5a/Frizzled-4/LRP5 endocytosis complex and downstream activation of β-catenin, thereby replacing the Wnt3a-controlled canonical pathway used by normal hematopoietic stem cells. Transduction of primitive normal human hematopoietic cells with FAK splice variants induces a marked increase in their clonogenic activity and signaling via the Wnt5a-controlled canonical pathway. Targeting FAK or β-catenin efficiently eradicates primitive leukemic cells in vitro suggesting that FAK could be a useful therapeutic target for improved treatment of poor prognosis AML cases. STEM CELLS2012;30:1597-1610

    Characterization of Human Colon Organoids From Inflammatory Bowel Disease Patients

    No full text
    International audienceInflammatory Bowel Diseases (IBD) are chronic inflammatory disorders, where epithelial defects drive, at least in part, some of the pathology. We reconstituted human intestinal epithelial organ, by using three-dimension culture of human colon organoids. Our aim was to characterize morphological and functional phenotypes of control (non-IBD) organoids, compared to inflamed organoids from IBD patients. The results generated describe the epithelial defects associated with IBD in primary organoid cultures, and evaluate the use of this model for pharmacological testing of anti-inflammatory approaches. Human colonic tissues were obtained from either surgical resections or biopsies, all harvested in non-inflammatory zones. Crypts were isolated from controls (non-IBD) and IBD patients and were cultured up to 12-days. Morphological (size, budding formation, polarization, luminal content), cell composition (proliferation, differentiation, immaturity markers expression), and functional (chemokine and tight junction protein expression) parameters were measured by immunohistochemistry, RT-qPCR or western-blot. The effects of inflammatory cocktail or anti-inflammatory treatments were studied in controls and IBD organoid cultures respectively. Organoid cultures from controls or IBD patients had the same cell composition after 10 to 12-days of culture, but IBD organoid cultures showed an inflammatory phenotype with decreased size and budding capacity, increased cell death, luminal debris, and inverted polarization. Tight junction proteins were also significantly decreased in IBD organoid cultures. Inflammatory cytokine cocktail reproduced this inflammatory phenotype in non-IBD organoids. Clinically used treatments (5-ASA, glucocorticoids, anti-TNF) reduced some, but not all parameters. Inflammatory phenotype is associated with IBD epithelium, and can be studied in organoid cultures. This model constitutes a reliable human pre-clinical model to investigate new strategies targeting epithelial repair
    corecore