75 research outputs found

    Automated radiofrequency-based US measurement of common carotid intima-media thickness in RA patients treated with synthetic vs synthetic and biologic DMARDs

    Get PDF
    Objective. To compare the carotid intima-media thickness (IMT) assessed with automated radiofrequency-based US in RA patients treated with synthetic vs synthetic and biologic DMARDs and controls. Methods. Ninety-four RA patients and 94 sex-and age-matched controls were prospectively recruited at seven centres. Cardiovascular (CV) risk factors and co-morbidities, RA characteristics and therapy were recorded. Common carotid artery (CCA)-IMT was assessed in RA patients and controls with automated radiofrequency-based US by the same investigator at each centre. Results. Forty-five (47.9%) RA patients had been treated with synthetic DMARDs and 49 (52.1%) with synthetic and biologic DMARDs. There were no significant differences between the RA patients and controls in demographics, CV co-morbidities and CV disease. There were significantly more smokers among RA patients treated with synthetic and biologic DMARDs (P = 0.036). Disease duration and duration of CS and synthetic DMARD therapy was significantly longer in RA patients treated with synthetic and biologic DMARDs (P<0.0005). The mean CCA-IMT was significantly greater in RA patients treated only with synthetic DMARDs than in controls [591.4 (98.6) vs 562.1 (85.8); P = 0.035] and in RA patients treated with synthetic and biologic DMARDs [591.4 (98.6) vs 558.8 (95.3); P = 0.040). There was no significant difference between the mean CCA-IMT in RA patients treated with synthetic and biologic DMARDs and controls (P = 0.997). Conclusion. Our results suggest that radiofrequency-based measurement of CCA-IMT can discriminate between RA patients treated with synthetic DMARDs vs RA patients treated with synthetic and biologic DMARDs

    Shaping a screening file for maximal lead discovery efficiency and effectiveness: elimination of molecular redundancy

    Get PDF
    High Throughput Screening (HTS) is a successful strategy for finding hits and leads that have the opportunity to be converted into drugs. In this paper we highlight novel computational methods used to select compounds to build a new screening file at Pfizer and the analytical methods we used to assess their quality. We also introduce the novel concept of molecular redundancy to help decide on the density of compounds required in any region of chemical space in order to be confident of running successful HTS campaigns

    Enabling large-scale design, synthesis and validation of small molecule protein-protein antagonists

    Get PDF
    Although there is no shortage of potential drug targets, there are only a handful known low-molecular-weight inhibitors of protein-protein interactions (PPIs). One problem is that current efforts are dominated by low-yield high-throughput screening, whose rigid framework is not suitable for the diverse chemotypes present in PPIs. Here, we developed a novel pharmacophore-based interactive screening technology that builds on the role anchor residues, or deeply buried hot spots, have in PPIs, and redesigns these entry points with anchor-biased virtual multicomponent reactions, delivering tens of millions of readily synthesizable novel compounds. Application of this approach to the MDM2/p53 cancer target led to high hit rates, resulting in a large and diverse set of confirmed inhibitors, and co-crystal structures validate the designed compounds. Our unique open-access technology promises to expand chemical space and the exploration of the human interactome by leveraging in-house small-scale assays and user-friendly chemistry to rationally design ligands for PPIs with known structure. © 2012 Koes et al

    Human Genetics in Rheumatoid Arthritis Guides a High-Throughput Drug Screen of the CD40 Signaling Pathway

    Get PDF
    Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS) and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P = 1.4×10(−9)). Second, we demonstrate that subjects homozygous for the RA risk allele have ∼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P = 10(−9)), a finding corroborated by expression quantitative trait loci (eQTL) analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2) and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65), a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L) and conduct an HTS of 1,982 chemical compounds and FDA–approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel therapies in complex traits such as RA

    Identification of semicarbazones, thiosemicarbazones and triazine nitriles as inhibitors of Leishmania mexicana cysteine protease CPB

    Get PDF
    Cysteine proteases of the papain superfamily are present in nearly all eukaryotes. They play pivotal roles in the biology of parasites and inhibition of cysteine proteases is emerging as an important strategy to combat parasitic diseases such as sleeping sickness, Chagas' disease and leishmaniasis. Homology modeling of the mature Leishmania mexicana cysteine protease CPB2.8 suggested that it differs significantly from bovine cathepsin B and thus could be a good drug target. High throughput screening of a compound library against this enzyme and bovine cathepsin B in a counter assay identified four novel inhibitors, containing the warhead-types semicarbazone, thiosemicarbazone and triazine nitrile, that can be used as leads for antiparasite drug design. Covalent docking experiments confirmed the SARs of these lead compounds in an effort to understand the structural elements required for specific inhibition of CPB2.8. This study has provided starting points for the design of selective and highly potent inhibitors of L. mexicana cysteine protease CPB that may also have useful efficacy against other important cysteine proteases

    Multi-examiner reliability of automated radio frequency-based ultrasound measurements of common carotid intima-media thickness in rheumatoid arthritis

    Get PDF
    Objectives. To assess the reliability of the automated radio frequency (RF)-based US measurement of carotid intima-media thickness (IMT) performed by rheumatologists and to evaluate the variability between this method and the conventional B-mode US measurement of carotid IMT in RA patients. Methods. Twelve rheumatologists measured in two blinded rounds the IMT of both common carotid arteries (CCAs) of seven RA patients with an automated RF-based method. At each round, a cardiologist measured both CCA-IMTs of the patients using an automated B-mode method. Inter-observer reliability for RF-based IMT measurements was evaluated by the intra-class correlation coefficient (ICC). Intra-observer reliability for RF-based IMT measurements was assessed using the root mean square coefficient of variation (RMS-CV), Bland-Altman method and ICC. Agreement between the two US methods was evaluated by the Bland-Altman method, ICC and RMS-CV. Results. Inter-observer ICCs for the RF-based CCA-IMT measurements were 0.85 (95% CI 0.69, 0.94) for the first round, and 0.77 (95% CI 0.55, 0.91) for the second round. RMS-CVs for the RF-based CCA-IMT measurements varied from 5.6 to 11.7%. The mean intra-observer ICC for the RF-based CCA-IMT measurements was 0.61 (95% CI 0.46, 0.71). In the Bland-Altman analysis for agreement between RF-based and B-mode CCA-IMT measurements, the mean difference varied from -0.6 to -19.7 mu m. Inter-method ICCs varied from 0.57 to 0.83 for 11 rheumatologists. Inter-method RMS-CVs varied from 11.3 to 13.7%. Conclusions. Our results suggest that automated RF-based CCA-IMT measurement performed by rheumatologists can be a reliable method for assessing cardiovascular risk in RA patients
    • …
    corecore