242,483 research outputs found

    Breakdown of QCD Factorization for P-Wave Quarkonium Production at Low Transverse Momentum

    Get PDF
    Quarkonium production at low transverse momentum in hadron collisions can be used to extract Transverse-Momentum-Dependent(TMD) gluon distribution functions, if TMD factorization holds there. We show that TMD factorization for the case of P-wave quarkonium with JPC=0++,2++J^{PC}=0^{++}, 2^{++} holds at one-loop level, but is violated beyond one-loop level. TMD factorization for other P-wave quarkonium is also violated already at one-loop.Comment: Published version in Physics Letters B (2014), pp. 103-10

    Transverse Momentum Dependent Factorization for Quarkonium Production at Low Transverse Momentum

    Full text link
    Quarkonium production in hadron collisions at low transverse momentum q⊥≪Mq_\perp \ll M with MM as the quarkonium mass can be used for probing transverse momentum dependent (TMD) gluon distributions. For this purpose, one needs to establish the TMD factorization for the process. We examine the factorization at the one-loop level for the production of ηc\eta_c or ηb\eta_b. The perturbative coefficient in the factorization is determined at one-loop accuracy. Comparing the factorization derived at tree level and that beyond the tree level, a soft factor is, in general, needed to completely cancel soft divergences. We have also discussed possible complications of TMD factorization of p-wave quarkonium production.Comment: Title changed in the journal, published versio

    High--Resolution 3D Simulations of Relativistic Jets

    Full text link
    We have performed high-resolution 3D simulations of relativistic jets with beam flow Lorentz factors up to 7, a spatial resolution of 8 cells per beam radius, and for up to 75 normalized time units to study the morphology and dynamics of 3D relativistic jets. Our simulations show that the coherent fast backflows found in axisymmetric models are not present in 3D models. We further find that when the jet is exposed to non-axisymmetric perturbations, (i) it does not display the strong perturbations found for 3D classical hydrodynamic and MHD jets (at least during the period of time covered by our simulations), and (ii) it does propagate according to the 1D estimate. Small 3D effects in the relativistic beam give rise to a lumpy distribution of apparent speeds like that observed in M87. The beam is surrounded by a boundary layer of high specific internal energy. The properties of this layer are briefly discussed.Comment: 15 pages, 4 figures. Accepted to be publish in the ApJ Letters. Tar+gzip documen

    Dissipate locally, couple globally: a sharp transition from decoupling to infinite range coupling in Josephson arrays with on-site dissipation

    Full text link
    We study the T=0 normal to superconducting transition of Josephson arrays with {\it on-site} dissipation. A perturbative renormalization group solution is given. Like the previously studied case of {\it bond} dissipation (BD), this is a "floating" to coupled (FC) phase transition. {\it Unlike} the BD transition, at which {\it only} nearest-neighbor couplings become relevant, here {\it all} inter-grain couplings, out to {\it infinitely} large distances, do so simultaneously. We predict, for the first time in an FC transition, a diverging spatial correlation length. Our results show the robustness of floating phases in dissipative quantum systems.Comment: 7+ pages, 3 eps figures, Europhysics Letters preprint format, as publishe

    Renormalization and resummation in finite temperature field theories

    Get PDF
    Resummation, ie. reorganization of perturbative series, can result in an inconsistent perturbation theory, unless the counterterms are reorganized in an appropriate way. In this paper two methods are presented for resummation of counterterms: one is a direct method where the necessary counterterms are constructed order by order; the other is a general one, based on renormalization group arguments. We demonstrate at one hand that, in mass independent schemes, mass resummation can be performed by gap equations renormalized prior to the substitution of the resummed mass for its argument. On the other hand it is shown that any (momentum-independent) form of mass and coupling constant resummation is compatible with renormalization, and one can explicitly construct the corresponding counterterms.Comment: 10 pages, 4 figures, revtex
    • …
    corecore