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Quarkonium production at low transverse momentum in hadron collisions can be used to extract 
Transverse-Momentum-Dependent (TMD) gluon distribution functions, if TMD factorization holds there. 
We show that TMD factorization for the case of P-wave quarkonium with J P C = 0++, 2++ holds at one-
loop level, but is violated beyond one-loop level. TMD factorization for other P-wave quarkonium is also 
violated already at one-loop level.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
Collisions with hadrons provide important information about 
the interactions and inner structure of hadrons. There are pro-
cesses, where a small transverse momentum is involved. E.g., the 
lepton pair in Drell–Yan processes are produced in low transverse 
momentum. This type of processes is of particular interest. In gen-
eral such a small transverse momentum is generated at least partly 
from the transverse motion of partons inside a hadron. Therefore, 
studies of the processes will provide information about transverse 
momentum distributions of parton in a hadron.

In order to extract the distributions from experimental mea-
surements, one needs to establish QCD Transverse-Momentum-
Dependent (TMD) factorizations to consistently separate nonper-
turbative and perturbative effects in relevant processes. The non-
perturbative effects are represented by TMD parton distribution 
functions and a soft factor. These quantities are defined with QCD 
operators. TMD factorization has been established for a number 
of processes like e+e−-annihilations [1], Drell–Yan processes [2,3]
and Semi-Inclusive Deeply Inelastic Scattering (SIDIS) [4,5]. From 
Drell–Yan processes and SIDIS only TMD quark distribution func-
tions can be extracted. Besides TMD quark distribution functions 
there exist TMD gluon distribution functions describing gluon con-
tents of a hadron. Several processes like Higgs-production [6,7], 
quarkonium production [8], two-photon production [9] and the 
production of a quarkonium combined with a photon [10], are sug-
gested to determine TMD gluon distribution functions. In this letter 
we are interested in TMD factorization for P-wave quarkonium pro-
duction at low transverse momentum.

* Corresponding author.
http://dx.doi.org/10.1016/j.physletb.2014.08.033
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
In the production of 1 S0 quarkonium at low transverse momen-
tum, TMD factorization is explicitly examined at one-loop level in 
[11], where the quarkonium will not interact with soft gluons at 
leading power. Therefore, it is expected that the factorization holds 
beyond one-loop level. Here we will show that TMD factorization 
for 3 P0 and 3 P2 quarkonium holds at one-loop level. But it is vi-
olated beyond one-loop. We will also discuss TMD factorization of 
1 P1 quarkonium.

We use the light-cone coordinate system, in which a vec-
tor aμ is expressed as aμ = (a+, a−, �a⊥) = ((a0 + a3)/

√
2, (a0 −

a3)/
√

2, a1, a2) and a2⊥ = (a1)2 + (a2)2. gμν
⊥ is the transverse part 

of the metric. Its nonzero elements are g11⊥ = g22⊥ = −1. The pro-
cess we consider is:

hA(P A) + hB(P B) → χ0,2(q) + X, (1)

in the kinematic region with q⊥ � M , where M is the mass of the 
quarkonium χ0 or χ2, i.e., q2 = M2 = Q 2. We use χ J to denote the 
quarkonium χc J or χb J . The momenta of initial hadrons are given 
by Pμ

A ≈ (P+
A , 0, 0, 0) and Pμ

B ≈ (0, P−
B , 0, 0). We take the initial 

hadrons as unpolarized.
It is noted that one can use collinear factorization for the pro-

cess if the produced quarkonium has large transverse momentum, 
i.e., q⊥ 	 ΛQCD. In this case the nonperturbative effects of ini-
tial hadrons are parameterized with standard parton distribution 
functions. The transverse momenta of partons from initial hadrons 
are neglected in comparison with large q⊥ . But, in the kinematic 
region with q⊥ ∼ ΛQCD � Q , the collinear factorization is not ap-
plicable. The transverse momenta of partons cannot be neglected 
because they are at the order of q⊥ . In this region one may use 
TMD factorization.
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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A quarkonium mainly consists a heavy quark Q Q̄ -pair. The 
heavy quark Q or Q̄ moves with a small velocity v in the rest 
frame of the quarkonium. One can use nonrelativistic QCD to study 
a quarkonium. To factorize the nonperturbative effects related to a 
quarkonium in its production or its decay one can used NRQCD 
factorization suggested in [12]. In this factorization, one makes an 
expansion in v and the nonperturbative effects are represented by 
NRQCD matrix elements. At the leading order of v , one needs to 
consider the production of a heavy quark Q Q̄ -pair in color-singlet 
or color octet for a P-wave quarkonium. The color-octet Q Q̄ -pair 
is in 3 S1-state and the singlet is in 3 P J -state. Hence, the produc-
tion rate of a 3 P J -quarkonium can be written as a sum of two 
components at the leading order of v in NRQCD factorization:

dσ(χ J ) = dσ
(3 P (1)

J

) + dσ
(3 S(8)

1

)
. (2)

The first component denotes the contribution in which a Q Q̄ -pair 
is produced in a color-single 3 P J -state and then the pair is trans-
mitted into the quarkonium χ J . The second component denotes 
the contribution in which a Q Q̄ -pair is produced in a color-octet 
3 S1-state and then the pair is transmitted into the quarkonium χ J . 
The production of a heavy quark pair can be studied with pertur-
bative QCD. The transmissions are nonperturbative and can be de-
scribed with NRQCD matrix elements. We notice here that NRQCD 
factorization of the color-octet component can be violated at two-
loop level and it can be restored by adding gauge links in NRQCD 
color-octet matrix elements [13].

The production of a Q Q̄ -pair can be through different pro-
cesses initiated by partons from initial hadrons. Because of high 
energy of initial hadrons, it is expected the production is initi-
ated by gluons from hadrons in the initial state. At leading power 
or leading twist, the nonperturbative effects related to the initial 
hadrons are parametrized with TMD gluon distribution functions. 
We take hA to give the definitions. We first introduce the gauge 
link along the direction uμ = (u+, u−, 0, 0):

Lu(z,−∞) = P exp

(
−igs

0∫
−∞

dλu · G(λu + z)

)
, (3)

where the gluon field is in the adjoint representation. At lead-
ing twist one can define two TMD gluon distributions through the 
gluon density matrix [6,14]:

1

xP+

∫
dξ−d2ξ⊥
(2π)3

e−ixξ− P+
A +i�ξ⊥·�k⊥

× 〈hA |(G+μ(ξ)Lu(ξ,−∞)
)a(L†

u(0,−∞)G+ν(0)
)a|hA〉

= −1

2
gμν
⊥ f g/A

(
x,k⊥, ζ 2

u ,μ
)

+
(

kμ
⊥kν⊥ + 1

2
gμν
⊥ k2⊥

)
hg/A

(
x,k⊥, ζ 2

u ,μ
)

(4)

with ξμ = (0, ξ−, �ξ⊥). The definition is given in non-singular 
gauges. It is gauge invariant. In singular gauges, one needs to add 
gauge links along transverse direction at ξ− = −∞ [15]. Because 
of the gauge links, the TMD gluon distributions also depend on 
the vector u through the variable ζ 2

u = (2u · P A)2/u2. In the defi-
nition the limit u+ � u− is taken in the sense that one neglects 
all contributions suppressed by negative powers of ζ 2

u . The TMD 
gluon distribution function of hB is defined in a similar way. Be-
cause hB moves in the (−)-direction, the used gauge link is along 
the direction vμ = (v+, v−, 0, 0) with v+ 	 v− .

The above definition in Eq. (4) is for an unpolarized hadron. 
There are two TMD gluon distributions. The distribution f g/A de-
Fig. 1. Tree-level diagrams for the amplitudes of gg → Q Q̄ .

scribes unpolarized gluons in hA and can be related to the stan-
dard gluon distribution in collinear factorization, while the distri-
bution hg/A describes lineally polarized gluons in hA . The phe-
nomenology of hg/A has been recently studied [7,16,17]. In this 
work we will only consider the contributions with f g/A . As show-
ing in the studies of TMD factorization with TMD gluon distribu-
tion functions in [6,11], one needs a soft factor to factorize the 
effect of exchanges of soft gluons. The soft factor S̃ is defined as:

S̃(�
⊥,μ,ρ) =
∫

d2b⊥
(2π)2

ei�b⊥·�
⊥ S−1(�b⊥,μ,ρ),

S(�b⊥,μ,ρ)

= 1

N2
c − 1

〈0|Tr
[
L†

v(�b⊥,−∞)Lu(�b⊥,−∞)

×L†
u(�0,−∞)Lv(�0,−∞)

]|0〉. (5)

The defined TMD gluon distribution functions and the soft fac-
tor are nonperturbative ingredients in TMD factorizations in the 
mentioned processes for extracting TMD gluon distributions. The 
importance of TMD factorization is not only limited for exploring 
inner structure of initial hadrons, but also for resummation of large 
log terms in perturbative coefficient functions in collinear factor-
izations. Studies of the resummation in quarkonium production in 
kinematical regions of moderate transverse momenta have been 
carried out in [18,19].

In general, a QCD factorization, which is proven for a hadronic 
process, also holds if one replaces hadrons in the hadronic process 
with partons. It means that one can examine a factorization with 
corresponding partonic state. In our case, especially for showing 
violation of TMD factorization for the process in Eq. (1) initiated by 
gluons from hadrons, we only need to replace each initial hadron 
with an on-shell gluon and to study the process:

g(p,a) + g(p̄,b) → Q (p1)Q̄ (p2) + X . (6)

In the above we have replace hA and hB with the gluon g(p) and 
g(p̄), respectively. The momenta of the initial gluons are given by 
pμ = (p+, 0, 0, 0) and p̄μ = (0, p̄−, 0, 0). The momentum of Q and 
Q̄ is given by

p1 = q

2
+ Δ, p2 = q

2
− Δ. (7)

The small velocity expansion here is an expansion in Δ. From the 
Q Q̄ -pair one can project out a state with given quantum numbers.

At tree-level, the amplitude for the partonic process in Eq. (6) is 
given by diagrams in Fig. 1. It is standard to perform the projection 
from the Q Q̄ -pair into 3 P (1)

J - and 3 S(8)
1 state combined with the 

expansion in Δ. At tree-level, we have the result for the differential 
cross-section:

dσ(χ0,2)

dxdyd2q⊥
= πσ0(

3 P (1)
0,2)

Q 2
δ
(
xys − Q 2)

× δ(1 − x)δ(1 − y)δ2(q⊥), (8)
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with q+ = xp+ , q− = yp̄− and s = (p + p̄)2. The coefficients σ0 are 
given by:

σ0
(3 P (1)

0

) = 3(4παs)
2

Nc(N2
c − 1)m3

Q

〈0|O(3 P (1)
0

)|0〉,

σ0
(3 P (1)

2

) = 4(4παs)
2

5Nc(N2
c − 1)m3

Q

〈0|O(3 P (1)
2

)|0〉. (9)

The matrix elements are of NRQCD operators denoted as O(3 P (1)
0,2). 

The color-octet component is with the matrix element of NRQCD 
operator O(3 S(8)

1 ). The definition of these operators can be found 
in [12]. These matrix elements characterize the transition from 
the produced Q Q̄ -pair with given quantum numbers into the ob-
served quarkonium. It is noted that at tree-level the color-octet 
component is zero.

Now we discuss the one-loop contribution to the process 
Eq. (6). The one-loop contribution consists of the real- and vir-
tual correction. In the virtual correction the unobserved state X is 
the same as that in the tree-level contribution, i.e., X is the vac-
uum. In the real correction the X-state consists of a gluon. The 
real correction is represented by diagrams in Fig. 2.

In calculating the real correction, one needs to expand it in 
q⊥/Q = λ, because of that we are interested in the kinematical 
region with λ � 1. In this region, the exchanged gluon must be 
collinear to the initial gluons or soft. It is straightforward to obtain 
the real contribution at the leading order of λ:

dσ(χ0,2)

dxdyd2q⊥

∣∣∣∣
real

= πσ0(
3 P (1)

0,2)

Q 2

αs Nc

π2q2⊥
δ
(
xys − Q 2)[ (1 − x + x2)2

x(1 − x)+
δ(1 − y)

+ (1 − y + y2)2

y(1 − y)+
δ(1 − x) − δ(1 − x)δ(1 − y) ln

q2⊥
Q 2

]

+O
(
λ−1). (10)

The leading order here is at λ−2 which is the same as the or-
der of the tree-level result in Eq. (8). It is singular if we take 
q⊥ → 0. It is interesting to note that at one-loop only the color-
singlet component gives the contribution at the leading order of λ. 
The color-octet component gives contributions at higher orders of 
λ. The virtual corrections from one-loop has been studied in [20]. 
The virtual correction for 3 P (1)

J with J = 0, 2 is:

dσ(χ J )

dxdyd2q⊥

∣∣∣∣
vir.

= πσ0(
3 P (1)

J )

Q 2
δ
(
xys − Q 2)δ(1 − x)δ(1 − y)δ2(q⊥)

αs

π

×
[
−Nc

(
4

ε2
+ 2

ε
ln

4πμ2
s

eγ Q 2
+ 1

2
ln2 4πμ2

s

eγ Q 2
+ π2

12

)

− β0

2

(
2

ε
+ ln

4πμ2
s

eγ Q 2

)
+ β0

2
ln

μ2

Q 2
+ C J

]
,

C0 = C F

(
−7

3
+ π2

4

)
+ Nc

(
1

3
+ 5π2

12

)
,

C2 = −4C F + Nc

(
1

3
+ 5

3
ln 2 + π2

6

)
. (11)

The above result is obtained from the original one given in 
Eq. (124) of [20] after factorizing the Coulomb singularity and 
subtracting the UV divergence. The Coulomb singularity is factor-
ized into NRQCD matrix elements. The divergent terms as poles 
of ε = 4 − d are for collinear- or IR divergences. The scale μs is 
related to these divergences. μ is the UV scale.

To study the TMD factorization of the process in Eq. (6), one 
needs also to study the TMD gluon distribution function defined 
in Eq. (4) by replacing hA with a free gluon. After the replace-
ment, one can calculate the function with perturbative theory. The 
defined soft factor S̃ can also be calculated perturbatively. The re-
sults at one-loop with different regularizations of collinear- and IR
divergences can be found in [6,11]. With these results one can find 
that the differential cross-section at one-loop accuracy can be fac-
torized as:

dσ(χ J )

dxdyd2q⊥
= πσ0(

3 P (1)
J )

Q 2
H J

∫
d2ka⊥d2kb⊥d2
⊥

× δ2(�ka⊥ + �kb⊥ + �
⊥ − �q⊥)δ
(
xys − Q 2)

× f g/A(x,ka⊥, ζu) f g/B(y,kb⊥, ζv) S̃(
⊥,ρ),

H0,2 = 1 + Ncαs

4π

[(
ln2 Q 2

ζ 2
u

+ ln2 Q 2

ζ 2
v

− lnρ2
(

1 + 2 ln
μ2

Q 2

)
+ 2 ln

μ2

Q 2

)
+ 4

3
π2 + 6 + 4

Nc
C J

]
+O

(
α2

s

)
, (12)

with the corrections suppressed by powers of λ and the small 
velocity v . All singular contributions from the virtual and real cor-
rection are factorized into TMD gluon distribution functions and 
the soft factor. Therefore, the perturbative coefficient H0,2 is fi-
nite. The result shows that there is TMD factorization at one-loop 
for the process. In Eq. (12) we have written in the factorized form 
with TMD gluon distribution functions defined in Eq. (4) and the 
soft factor in Eq. (5). There are different definitions of TMD parton 
distribution functions, e.g., the one suggested in [21]. The differ-
ence between them can be calculated perturbatively and it has 
been studied in [22]. Taking the difference into account, the fac-
torized form in Eq. (12) essentially takes the same form as that for 
different processes studied in [6–11]. The only difference is that 
the perturbative coefficient H is different. The difference is from 
the difference of the definition of TMD gluon distributions and that 
of the considered processes.

Since we will show the derived TMD factorization does not hold 
beyond one-loop, it is useful to understand why the factorization 
holds at one-loop. In the factorization in Eq. (12), the collinear 
divergences introduced by gluon-emission from initial gluons in 
Fig. 2e and Fig. 2f are factorized into TMD gluon distribution func-
tions. The IR divergences from soft gluons emitted from initial glu-
ons are factorized into TMD gluon distribution functions and the 
soft factor. From the finiteness of the perturbative coefficient H0,2
one can realize that the emission of soft gluons from the Q Q̄ -pair 
in the final state does not introduce any IR divergent contribution, 
or the Q Q̄ pair seems to be decoupled from soft gluons at leading 
power. Since the Q Q̄ pair is in P-wave, it is in general expected 
that there are interactions with soft gluons. To completely under-
stand this a detailed analysis of Figs. 2b and 2c is needed.

We denote the amplitude of g(p) + g(p̄) → Q (p1)Q̄ (p2) as:

T (Q Q̄ ) = ū(p1)Γ (p, p̄, p1, p2)v(p2), (13)

with Γ is represented by the bubble in Fig. 2a. The polarization 
vectors and color factors of initial gluons are also included in Γ . 
At tree-level, Γ is given by the sum of all diagrams in Fig. 1. Now 
we consider the contributions from Figs. 2b and 2c, in which a soft 
gluon with the momentum kμ ∼ Q (λ, λ, λ, λ) is emitted from Q
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Fig. 2. Diagrams for the real correction. (a) The sum of all tree-level diagrams in Fig. 1. (d) Diagrams with one gluon emitted from propagators in tree-level diagrams. Other 
diagrams are for one-gluon emission from a external leg of tree-level diagrams.
or Q̄ in the final state with λ = q⊥/Q � 1. The soft gluon is with 
the polarization index μ and the color index c. At leading order of 
λ one has the sum of the contributions as

T (Q Q̄ )|2b+2c = ū(p1)

[(−igs T c) ipμ
1

p1 · k + iε
Γ (p, p̄, p1, p2)

+ Γ (p, p̄, p1, p2)
−ipμ

2

p2 · k + iε

(−igs T c)]v(p2),

(14)

from the above, the amplitude in general case is at order of λ−1. 
If one calculates the contribution from the amplitude to the dif-
ferential cross-section, one will have an IR divergent contribution 
when the soft gluon is not in the final state, or a contribution at 
the leading power of λ when the soft gluon is in the final state. 
These contributions need to be factorized. But, if we project out a 
state with given quantum numbers and make the expansion in the 
small velocity v , the order of λ can be changed.

For the production of χ J we need to project the Q Q̄ pair into 
the state which is a spin-triplet state with the orbital angular mo-
mentum L = 1. We also need to expand the relative momentum 
Δ defined in Eq. (7) and to take the leading order of Δ or v . We 
denote the polarization vector of the spin-triplet as ε∗(sz). After 
doing the projection and the expansion we obtain the amplitude 
for production of a 3 P (1)

J Q Q̄ pair as:

T
(3 P (1)

J

)∣∣
2b+2c

∝
∑
m,sz

〈 J , J z|1,m,1, sz〉ε∗α(m)

× ∂

∂Δα

{(
gs pμ

1

p1 · k + iε
− gs pμ

2

p2 · k + iε

)

× 1

mQ
Tr

[
(−γ · p2 + mQ )γ · ε∗(sz)

× (γ · p1 + mQ )T cΓ (p, p̄, p1, p2)
]}∣∣∣∣

Δ=0

=
∑
m,sz

〈 J , J z|1,m,1, sz〉ε∗α(m)

×
{

∂

∂Δα

(
gs pμ

1

p1 · k + iε
− gs pμ

2

p2 · k + iε

)}∣∣∣∣
Δ=0

· Tr
(
γ · ε∗(sz)(γ · q + 2mQ )T cΓ (p, p̄,q/2,q/2)

)
. (15)
We note that the expression of the last line is the amplitude 
T (3 S(8)

1 ) of g + g → Q Q̄ (3 S(8)
1 ). This amplitude is zero at tree-

level. Therefore, at one-loop the soft gluon is decoupled from the 
3 P (1)

J pair at leading power. This is why Fig. 2b and Fig. 2c gives 
no contribution to the one-loop real correction at leading power 
of q⊥ as mentioned before. The decoupling discussed here can be 
generalized to the case of emission of many soft gluons. It is noted 
that the soft gluon is not decoupled or its effect is not power-
suppressed, if the amplitude of g + g → Q Q̄ (3 S(8)

1 ) is nonzero. 
This can be checked by an explicit calculation if the soft gluon is 
in the final state. One can calculate the contribution to the differ-
ential cross-section from the interference of the amplitude given in 
Eq. (15) with the tree-level amplitude represented by Fig. 2e and 
Fig. 2f, in which the gluon in the final state is a soft one. We have 
for χ0:

dσ(χ0)

dxdyd2q⊥

∣∣∣∣
2b+2c

= F8
Ncσ0(

3 P (1)
0 )

12π2 Q 2q2⊥
δ(1 − x)δ(1 − y)δ

(
xys − Q 2) +O

(
λ−1),

(16)

where we have parameterized the amplitude T (3 S(8)
1 ) from sym-

metries as:

T
(3 S(8)

1

) = Tr
(
γ · ε∗(sz)(γ · q + 2mQ )T cΓ (p, p̄,q/2,q/2)

)
= 1

mQ
f abcε∗(sz) · (p − p̄)ε(p) · ε(p̄)F8. (17)

In Eq. (17) the color index a and the polarization ε(p) are of the 
gluon with the momentum p, the color index b and the polariza-
tion ε(p̄) are of the gluon with the momentum p̄. ε∗(sz) has the 
property ε∗(sz) · (p + p̄) = 0. F8 is a constant. From Eq. (16) one 
can see that the soft gluon contribution is at the leading order 
of λ, i.e., the contribution is at λ−2 which is the same order of the 
contribution given in Eq. (10). This clearly indicates that the effect 
from the soft gluon in Fig. 2b and Fig. 2c is not power-suppressed. 
We have also calculate the soft gluon contribution for χ2. The 
contribution for χ2 is zero because of the conservation of angu-
lar momentum. If there are two or more gluons in the final state, 
the contribution for χ2 can become nonzero at leading power.

If one attempts to show the TMD factorization in Eq. (12) be-
yond one-loop level, one needs to show that the decoupling holds 
at any order. To show this one needs to prove that the amplitude 
T (3 S(8)

) or F8 is zero at any order. It is true that the amplitude 
1
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Fig. 3. One of the four diagrams with one soft gluon emitted or absorbed by the 
Q Q̄ -pair. The soft gluon is in the final state and the Q Q̄ -pair is in color-singlet 
and 3 P0,2-state. The bubbles represent the amplitude for gg → Q Q̄ in color-octet 
and 3 S1 state starting at order of α2

s .

or F8 is zero at tree-level by explicit calculation. But it seems that 
one cannot show this from symmetries of QCD. We note here that 
Landau–Yang theorem does not apply here, because gluons, unlike 
photons, have colors. By performing an one-loop calculation for the 
amplitude we find the nonzero result:

F8 = α2
s

Nc

(
17 − 14 ln 2 − 5π2

4

)
+O

(
α3

s

)
. (18)

Therefore, beyond one-loop the TMD factorization in Eq. (12) for 
the process in Eqs. (1), (6) does not hold, because at least there 
are contributions from soft gluons which are not factorized into 
TMD gluon distribution functions and the defined soft factor S̃ .

At first look the factorization can be restored by modifying 
the soft factor for the color-singlet component and introducing an 
additional factorized contribution in Eq. (12) for the color-octet 
contribution with the perturbative coefficient starting at the or-
der of α4

s . The effect of soft-gluon emission can be completely 
factorized with different soft factors introduced in study of the 
resummation in heavy quark pair production in [22,23]. E.g., the 
emission of soft gluons from the P-wave Q Q̄ -pair discussed for 
Fig. 2 can be factorized at amplitude level with the object built 
with gauge links pointing to the future:

∂

∂Δwα

(
L†

w−Δw(�b⊥,∞)Lw+Δw(�b⊥,∞)
)∣∣∣∣

Δw=0
(19)

with w as the moving direction of the quarkonium. One can mod-
ify the soft factor in Eq. (5) for the color singlet component. How-
ever, if the factorization can be made with the modified soft factor 
in this way, it is not useful for extracting TMD gluon distribution 
functions, because of that we have then process-dependent soft 
factors which need to be determined with nonperturbative meth-
ods.

In fact the factorization cannot be restored in the case for 
quarkonium production, if the color-octet component contributes 
at leading order of λ and at some order of αs . To explain this, we 
consider the contribution to the differential cross-section from a 
class of diagrams given in Fig. 3, where the Q Q̄ -pair is in color-
singlet and 3 P0,2-state. As discussed in the above, the contribution 
from Fig. 3 with the soft gluon can be factorized with the modified 
soft factor for the color-singlet component discussed in the above. 
We note that the contribution from Fig. 3 without the soft gluon is 
at leading order of λ and factorized as the color-octet component 
combined with the color-octet NRQCD matrix element. If we inte-
grate the momentum of the soft gluon, the contribution from Fig. 3
will have an IR singularity. This IR divergent contribution is in fact 
factorized in the color-octet NRQCD matrix element of one-loop 
with the perturbative matching according to NRQCD factorization 
[12,24]. In other word, the color-octet NRQCD matrix element con-
tains the same IR singularity. In the restored TMD factorization for 
the contribution from Fig. 3 the momentum of the soft gluon is 
in fact not integrated, and the effect of the soft gluon is already 
factorized with the modified soft factor. Therefore, this IR singu-
larity is double-counted. This implies that the IR singularity in the 
color-octet NRQCD matrix element will in turn appear in the per-
turbative coefficient and the TMD factorization cannot be restored 
with the modified soft factor. This is unlike the case with the pro-
duction of a free Q Q̄ -pair studied in [22,23].

Similarly, TMD factorization for the production of a spin-singlet 
P-wave quarkonium hc or hb denoted as hQ is already violated at 
one-loop level. According to NRQCD factorization, the differential 
cross-section at the leading order of v is a sum of a color-singlet-
and a color-octet component

dσ(hQ ) = dσ
(1 P (1)

1

) + dσ
(1 S(8)

0

)
. (20)

This is similar to Eq. (2). In this case the color-octet component 
is not zero from the tree-level diagrams in Fig. 1, while the color-
singlet component is zero at tree-level. At one-loop with one gluon 
in the final state, the color-single component obtains a nonzero 
contribution from diagrams given in Fig. 3 with the Q Q̄ -pair in 
color-singlet and 1 P1-state. Now, the bubbles in Fig. 3 stand for 
the amplitude gg → Q Q̄ -pair in color-octet and 1 S0-state. The 
amplitude is nonzero at tree-level. Therefore, the Q Q̄ -pair is not 
decoupled with the soft gluon at one-loop level. From the study 
of the case with χ0,2, one can conclude that the TMD factorization 
for hQ does not hold at one-loop. We notice here that the differen-
tial cross-section for the production of other quarkonia with J = 1
becomes constant for q⊥ → 0. Hence, there is no TMD factoriza-
tion.

To summarize: We have studied TMD factorization for P-wave 
quarkonium production in hadron–hadron collisions at low trans-
verse momentum. These processes are thought to be useful for 
extracting TMD gluon distribution functions of hadrons. Our study 
shows that the TMD factorization for the production of a quarko-
nium with J P C = 0++, 2++ is violated beyond one-loop level. The 
factorization for the production of hc or hb is violated already 
at one-loop. Therefore, one cannot use these processes to extract 
TMD gluon distribution functions. To determine them from inclu-
sive single-quarkonium production in hadron collisions one can 
only use the production of 1 S0 quarkonium.
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