54 research outputs found

    5.IEEE-IGARSS in Seoul, Korea

    Get PDF
    Inha UniversityAgency for Defense DevelopmentDue to the phenological variation of vegetation growth in temperate region, it is often difficult to accurately assess the surface conditions on agricultural croplands, grasslands, and disturbed forests by current multi-spectral remote sensor data. In particular, the spectral similarity between soil and dry vegetation has been primary concern to correctly appraise the surface conditions during the non-growing seasons in temperature region. This study analyzes the spectral characteristics of the mixture of dry vegetation and soil. The reflectance spectra were obtained from laboratory spectroradiometer measurement and from EO-1 Hyperion image data. The reflectance spectra of several samples having different level of dry vegetation fractions show similar pattern from both lab measurement and hyperspectral image. Shortwave IR wavelengths, in particular at wavelength near 2200nm, are more sensitive to the fraction of dry vegetation. The reflectance spectra of bare soil could be distinguished from the other surfaces covered by dry vegetation during the leaf-off season. © 2005 IEEE.Project Number 14404021, Peport of Research Project ; Grant-in-Aid for Scientific Research(B)(2), from April 2002 to March 2006, Edited by Muramoto,Ken-ichiroKamata, NaotoKawanishi, TakuyaKubo, MamoruLiu, JiyuanLee, Kyu-Sung , 人工衛星データ活用のための東アジアの植生調査、課題番号14404021, 平成14年度~平成17年度科学研究費補助金, 基盤研究(B)(2)研究成果報告書, 研究代表者:村本, 健一郎, 金沢大学自然科学研究科教

    Oncogenic CagA Promotes Gastric Cancer Risk via Activating ERK Signaling Pathways: A Nested Case-Control Study

    Get PDF
    Background: CagA cellular interaction via activation of the ERK signaling pathway may be a starting point in the development of gastric cancer. This study aimed to evaluate whether genes involved in ERK downstream signaling pathways activated by CagA are susceptible genetic markers for gastric cancer. Methods: In the discovery phase, a total of 580 SNPs within +/-5 kbp of 30 candidate genes were genotyped to examine an association with gastric cancer risk in the Korean Multi-center Cancer Cohort (100 incident gastric cancer case-control sets). The most significant SNPs (raw or permutated p value??0.02) identified in the discovery analysis were re-evaluated in the extension phase using unconditional logistic regression model (400 gastric cancer case-control sets). Combined analyses including pooled-and meta-analysis were conducted to summarize all the results. Results: 24 SNPs in eight genes (ERK, Dock180, C3G, Rap1, Src, CrkL, Mek and Crk) were significantly associated with gastric cancer risk in the individual SNP analyses in the discovery phase (p??0.05). In the extension analyses, ERK rs5999749, Dock180 rs4635002 and C3G rs7853122 showed marginally significant gene-dose effects for gastric cancer. Consistently, final combined analysis presented the SNPs as significantly associated with gastric cancer risk (OR = 1.56, [95% CI: 1.19-2.06], OR = 0.61, [95% CI: 0.43-0.87], OR = 0.59, [95% CI: 0.54-0.76], respectively). Conclusions: Our findings suggest that ERK rs5999749, Dock180 rs4635002 and C3G rs7853122 are genetic determinants in gastric carcinogenesis

    The role of TNF genetic variants and the interaction with cigarette smoking for gastric cancer risk: a nested case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to investigate the role of <it>TNF </it>genetic variants and the combined effect between <it>TNF </it>gene and cigarette smoking in the development of gastric cancer in the Korean population.</p> <p>Methods</p> <p>We selected 84 incident gastric cancer cases and 336 matched controls nested within the Korean Multi-Center Cancer Cohort. Six SNPs on the <it>TNF </it>gene, <it>TNF</it>-α-238 G/A, -308 G/A, -857 C/T, -863 C/A, -1031 T/C, and <it>TNF</it>-β 252 A/G were genotyped. The ORs (95% CIs) were calculated using unconditional logistic regression model to detect each SNP and haplotype-pair effects for gastric cancer. The combined effects between the <it>TNF </it>gene and smoking on gastric cancer risk were also evaluated. Multi dimensionality reduction (MDR) analyses were performed to explore the potential <it>TNF </it>gene-gene interactions.</p> <p>Results</p> <p><it>TNF</it>-α-857 C/T containing the T allele was significantly associated with an increased risk of gastric cancer and a linear trend effect was observed in the additive model (OR = 1.6, 95% CI 1.0–2.5 for CT genotype; OR = 2.6, 95% CI 1.0–6.4 for TT genotype). All haplotype-pairs that contained TCT or CCC of <it>TNF</it>-α-1031 T/C, <it>TNF</it>-α-863 C/A, and <it>TNF</it>-α-857 C/T were associated with a significantly higher risk for gastric cancer only among smokers. In the MDR analysis, regardless of smoking status, <it>TNF</it>-α-857 C/T was included in the first list of SNPs with a significant main effect.</p> <p>Conclusion</p> <p><it>TNF</it>-α-857 C/T polymorphism may play an independent role in gastric carcinogenesis and the risk for gastric cancer by <it>TNF </it>genetic effect is pronounced by cigarette smoking.</p

    Genetic Susceptibility on CagA-Interacting Molecules and Gene-Environment Interaction with Phytoestrogens: A Putative Risk Factor for Gastric Cancer

    Get PDF
    OBJECTIVES: To evaluate whether genes that encode CagA-interacting molecules (SRC, PTPN11, CRK, CRKL, CSK, c-MET and GRB2) are associated with gastric cancer risk and whether an interaction between these genes and phytoestrogens modify gastric cancer risk. METHODS: In the discovery phase, 137 candidate SNPs in seven genes were analyzed in 76 incident gastric cancer cases and 322 matched controls from the Korean Multi-Center Cancer Cohort. Five significant SNPs in three genes (SRC, c-MET and CRK) were re-evaluated in 386 cases and 348 controls in the extension phase. Odds ratios (ORs) for gastric cancer risk were estimated adjusted for age, smoking, H. pylori seropositivity and CagA strain positivity. Summarized ORs in the total study population (462 cases and 670 controls) were presented using pooled- and meta-analysis. Plasma concentrations of phytoestrogens (genistein, daidzein, equol and enterolactone) were measured using the time-resolved fluoroimmunoassay. RESULTS: SRC rs6122566, rs6124914, c-MET rs41739, and CRK rs7208768 showed significant genetic effects for gastric cancer in both the pooled and meta-analysis without heterogeneity (pooled OR = 3.96 [95% CI 2.05-7.65], 1.24 [95% CI = 1.01-1.53], 1.19 [95% CI = 1.01-1.41], and 1.37 [95% CI = 1.15-1.62], respectively; meta OR = 4.59 [95% CI 2.74-7.70], 1.36 [95% CI = 1.09-1.70], 1.20 [95% CI = 1.00-1.44], and 1.32 [95% CI = 1.10-1.57], respectively). Risk allele of CRK rs7208768 had a significantly increased risk for gastric cancer at low phytoestrogen levels (p interaction<0.05). CONCLUSIONS: Our findings suggest that SRC, c-MET and CRK play a key role in gastric carcinogenesis by modulating CagA signal transductions and interaction between CRK gene and phytoestrogens modify gastric cancer risk

    Methylenetetrahydrofolate reductase C677T polymorphism in patients with gastric and colorectal cancer in a Korean population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study was designed to investigate an association between the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and the risk of gastric and colorectal cancer in the Korean population.</p> <p>Methods</p> <p>We conducted a population-based large-scale case-control study involving 2,213 patients with newly diagnosed gastric cancer, 1,829 patients with newly diagnosed colorectal cancer, and 1,700 healthy controls. Genotyping was performed with peripheral blood DNA for MTHFR C677T polymorphisms. The statistical significance was estimated by logistic regression analysis.</p> <p>Results</p> <p>The MTHFR C677T frequencies of CC, CT, and TT genotypes were 35.2%, 47.5%, and 17.3% among stomach cancer, 34%, 50.5%, and 15.5% in colorectal cancer, and 31.8%, 50.7%, and 17.5% in the controls, respectively. The MTHFR 677TT genotype showed a weak opposite association with colorectal cancer compared to the homozygous CC genotype [adjusted age and sex odds ratio (OR) = 0.792, 95% confidence interval (CI) = 0.638-0.984, <it>P </it>= 0.035]. Subjects with the MTHFR 677CT showed a significantly reduced risk of gastric cancer compared whose with the 677CC genotype (age- and sex-adjusted OR = 0.810; 95% CI = 0.696-0.942, <it>P </it>= 0.006). We also observed no significant interactions between the MTHFR C677T polymorphism and smoking or drinking in the risk of gastric and colorectal cancer.</p> <p>Conclusions</p> <p>The T allele was found to provide a weak protective association with gastric cancer and colorectal cancer.</p

    Ginseng Saponin Enriched in Rh1 and Rg2 Ameliorates Nonalcoholic Fatty Liver Disease by Inhibiting Inflammasome Activation

    No full text
    Nonalcoholic fatty liver disease (NAFLD) is becoming one of the most common chronic liver diseases in the world. One of the features of NAFLD is hepatic fat accumulation, which further causes hepatic steatosis, fibrosis, and inflammation. Saponins, the major pharmacologically active ingredients isolated from Panax notoginseng, contain several ginsenosides, which have various pharmacological and therapeutic functions. However, the ginsenoside-specific molecular mechanism of saponins in NAFLD remains unknown. This study aimed to elucidate the effects of ginseng saponin extract and its ginsenosides on hepatic steatosis, fibrosis, and inflammation and their underlying action mechanism in NAFLD. Mice were fed a fast food diet (FFD) for 16 weeks to induce NAFLD and then treated with saponin extract (50 or 150 mg/kg) for the remaining nine weeks to determine the effects of saponin on NAFLD. Saponin extract administration significantly alleviated FFD-induced hepatic steatosis, fibrosis, and inflammation. Particularly, saponin extract, compared with conventional red ginseng, contained significantly increased amounts of ginsenosides (Rh1 (10.34-fold) and Rg2 (7.1-fold)). In vitro Rh1 and Rg2 treatments exerted an anti-steatotic effect in primary hepatocytes, an antifibrotic effect in hepatic stellate cells, and anti-inflammatory and pro-mitophagy effects in immortalized mouse Kupffer cells. Mechanistically, saponin extract alleviated lipopolysaccharide-induced NLRP3 inflammasome activation by promoting mitophagy. In conclusion, saponin extract inhibited inflammation-mediated pathological inflammasome activation in macrophages, thereby preventing NAFLD development. Thus, saponin extract administration may be an alternative method for NAFLD prevention

    15-deoxy-δ12,14-prostaglandin j2 inhibits osteolytic breast cancer bone metastasis and estrogen deficiency-induced bone loss.

    No full text
    Breast cancer is the major cause of cancer death in women worldwide. The most common site of metastasis is bone. Bone metastases obstruct the normal bone remodeling process and aberrantly enhance osteoclast-mediated bone resorption, which results in osteolytic lesions. 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is an endogenous ligand of peroxisome proliferator-activated receptor gamma (PPARγ) that has anti-inflammatory and antitumor activity at micromolar concentrations through PPARγ-dependent and/or PPARγ-independent pathways. We investigated the inhibitory activity of 15d-PGJ2 on the bone loss that is associated with breast cancer bone metastasis and estrogen deficiency caused by cancer treatment. 15d-PGJ2 dose-dependently inhibited viability, migration, invasion, and parathyroid hormone-related protein (PTHrP) production in MDA-MB-231 breast cancer cells. 15d-PGJ2 suppressed receptor activator of nuclear factor kappa-B ligand (RANKL) mRNA levels and normalized osteoprotegerin (OPG) mRNA levels in hFOB1.19 osteoblastic cells treated with culture medium from MDA-MB-231 cells or PTHrP, which decreased the RANKL/OPG ratio. 15d-PGJ2 blocked RANKL-induced osteoclastogenesis and inhibited the formation of resorption pits by decreasing the activities of cathepsin K and matrix metalloproteinases, which are secreted by mature osteoclasts. 15d-PGJ2 exerted its effects on breast cancer and bone cells via PPARγ-independent pathways. In Balb/c nu/nu mice that received an intracardiac injection of MDA-MB-231 cells, subcutaneously injected 15d-PGJ2 substantially decreased metastatic progression, cancer cell-mediated bone destruction in femora, tibiae, and mandibles, and serum PTHrP levels. 15d-PGJ2 prevented the destruction of femoral trabecular structures in estrogen-deprived ICR mice as measured by bone morphometric parameters and serum biochemical data. Therefore, 15d-PGJ2 may be beneficial for the prevention and treatment of breast cancer-associated bone diseases

    Effect of 15d-PGJ<sub>2</sub> on osteolytic bone metastasis in nude mice that received intracardiac injections of MDA-MB-231 cells.

    No full text
    <p>MDA-MB-231/Luc<sup>+</sup> cells were inoculated into the left ventricles of female nude mice. 15d-PGJ<sub>2</sub> or zoledronic acid (ZA) was subcutaneously injected 3 times per week for 6 weeks at the indicated doses (<i>n</i> = 10). (A) Metastatic progression was detected by measuring bioluminescence in the same mice at 3 and 5 weeks after the injection of cancer cells. The formed metastases were quantified by measuring total photon flux per second. (B) Radiographic images of mandibles, distal femora, and proximal tibiae were scanned using μCT 6 weeks after the injection of cancer cells. Arrowheads indicate osteolytic lesions. (C) The mandibles of mice were analyzed using 3D-images. (D) Bone morphometric parameters, including BV/TV, Tb.N, Tb.Th, Tb.Sp, and SMI, were measured using μCT analysis of the proximal tibiae from mice. (E) Serum PTHrP levels were assayed using a commercially available ELISA kit. Data are expressed as the means ± SEM. <sup>#</sup><i>P</i><0.05, <sup>##</sup><i>P</i><0.01 vs. control group.*<i>P</i><0.05, **<i>P</i><0.01 vs. vehicle-treated group inoculated with cancer cells.</p

    Effect of 15d-PGJ<sub>2</sub> on the viability, migration, and invasion of MDA-MB-231 cells.

    No full text
    <p>(A) Cells were incubated in serum-free media containing various concentrations of 15d-PGJ<sub>2</sub> for 24 or 72 h. Cell viability was determined using the MTT assay. (B) Cells were grown to confluency in monolayers, scratched using a micropipette tip, and treated with the indicated concentrations of 15d-PGJ<sub>2</sub> for 40 h. Scratched areas on cultured MDA-MB-231 cells were observed under a light microscope immediately and 40 h after scratching (40x magnification). Relative migrating distances of cells into scratched areas were measured using ImageJ software. Data are expressed as percentages of cell migrating distances at 40 h compared with 0 h. (C) Cells were stimulated with a 1% FBS attractant and treated with 15d-PGJ<sub>2</sub> at the indicated concentrations for 24 h. Cells that traversed across the Matrigel matrix were stained with hematoxylin, and representative images were visualized using light microscopy (200x magnification). The numbers of invaded cells were counted in four random fields per membrane filter. Data are expressed as means ± SEM. *<i>P</i><0.05, **<i>P</i><0.001 vs. untreated cells.</p
    corecore