20 research outputs found

    Purification and preconcentration of genomic DNA from whole cell lysates using photoactivated polycarbonate (PPC) microfluidic chips

    Get PDF
    We discuss the use of a photoactivated polycarbonate (PPC) microfluidic chip for the solid-phase, reversible immobilization (SPRI) and purification of genomic DNA (gDNA) from whole cell lysates. The surface of polycarbonate was activated by UV radiation resulting in a photo-oxidation reaction, which produced a channel surface containing carboxylate groups. The gDNA was selectively captured on this photoactivated surface in an immobilization buffer, which consisted of 3% polyethylene glycol, 0.4 M NaCl and 70% ethanol. The methodology reported herein is similar to conventional SPRI in that surface-confined carboxylate groups are used for the selective immobilization of DNA; however, no magnetic beads or a magnetic field are required. As observed by UV spectroscopy, a load of ∼7.6 ± 1.6 µg/ml of gDNA was immobilized onto the PPC bed. The recovery of DNA following purification was estimated to be 85 ± 5%. The immobilization and purification assay using this PPC microchip could be performed within ∼25 min as follows: (i) DNA immobilization ∼6 min, (ii) chip washout with ethanol 10 min, and (iii) drying and gDNA desorption ∼6 min. The PPC microchip could also be used for subsequent assays with no substantial loss in recovery, no observable carryover and no need for ‘reactivation’ of the PC surface with UV light

    Microfluidics for the detection of minimal residual disease in acute myeloid leukemia patients using circulating leukemic cells selected from blood

    Get PDF
    Microfluidic assay for the selection of circulating leukemic cells from peripheral blood for the early detection of minimal residual disease in acute myeloid leukemia patients

    In-plane Extended Nano-coulter Counter (XnCC) for the Label-free Electrical Detection of Biological Particles

    Get PDF
    This is the peer reviewed version of the following article: Z. Zhao, S. Vaidyanathan, P. Bhanja, S. Gamage, S. Saha, C. McKinney, J. Choi, S. Park, T. Pahattuge, H. Wijerathne, J. M. Jackson, M. L. Huppert, M. A. Witek, S. A. Soper, Electroanalysis 2022, 34, 1961., which has been published in final form at https://doi.org/10.1002/elan.202200091. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.We report an in-plane extended nanopore Coulter counter (XnCC) chip fabricated in a thermoplastic via imprinting. The fabrication of the sensor utilized both photolithography and focused ion beam milling to make the microfluidic network and the in-plane pore sensor, respectively, in Si from which UV resin stamps were generated followed by thermal imprinting to produce the final device in the appropriate plastic (cyclic olefin polymer, COP). As an example of the utility of this in-plane extended nanopore sensor, we enumerated SARS-CoV-2 viral particles (VPs) affinity-selected from saliva and extracellular vesicles (EVs) affinity-selected from plasma samples secured from mouse models exposed to different ionizing radiation doses

    Solid-phase extraction and purification of membrane proteins using a UV-modified PMMA microfluidic bioaffinity μSPE device

    Get PDF
    We present a novel microfluidic solid-phase extraction (μSPE) device for the affinity enrichment of biotinylated membrane proteins from whole cell lysates

    Arrays of high-aspect ratio microchannels for high-throughput isolation of circulating tumor cells (CTCs)

    Get PDF
    Microsystem-based technologies are providing new opportunities in the area of in vitro diagnostics due to their ability to provide process automation enabling point-of-care operation. As an example, microsystems used for the isolation and analysis of circulating tumor cells (CTCs) from complex, heterogeneous samples in an automated fashion with improved recoveries and selectivity are providing new opportunities for this important biomarker. Unfortunately, many of the existing microfluidic systems lack the throughput capabilities and/or are too expensive to manufacture to warrant their widespread use in clinical testing scenarios. Here, we describe a disposable, all-polymer, microfluidic system for the high-throughput (HT) isolation of CTCs directly from whole blood inputs. The device employs an array of high aspect ratio (HAR), parallel, sinusoidal microchannels (25 µm × 150 µm; W × D; AR = 6.0) with walls covalently decorated with anti-EpCAM antibodies to provide affinity-based isolation of CTCs. Channel width, which is similar to an average CTC diameter (12–25 µm), plays a critical role in maximizing the probability of cell/wall interactions and allows for achieving high CTC recovery. The extended channel depth allows for increased throughput at the optimized flow velocity (2 mm/s in a microchannel); maximizes cell recovery, and prevents clogging of the microfluidic channels during blood processing. Fluidic addressing of the microchannel array with a minimal device footprint is provided by large cross-sectional area feed and exit channels poised orthogonal to the network of the sinusoidal capillary channels (so-called Z-geometry). Computational modeling was used to confirm uniform addressing of the channels in the isolation bed. Devices with various numbers of parallel microchannels ranging from 50 to 320 have been successfully constructed. Cyclic olefin copolymer (COC) was chosen as the substrate material due to its superior properties during UV-activation of the HAR microchannels surfaces prior to antibody attachment. Operation of the HT-CTC device has been validated by isolation of CTCs directly from blood secured from patients with metastatic prostate cancer. High CTC sample purities (low number of contaminating white blood cells, WBCs) allowed for direct lysis and molecular profiling of isolated CTCs

    Parallel Affinity-Based Isolation of Leukocyte Subsets Using Microfluidics: Application for Stroke Diagnosis

    Get PDF
    We report the design and performance of a polymer microfluidic device that can affinity select multiple types of biological cells simultaneously with sufficient recovery and purity to allow for the expression profiling of mRNA isolated from these cells. The microfluidic device consisted of four independent selection beds with curvilinear channels that were 25 μm wide and 80 μm deep and were modified with antibodies targeting antigens specifically expressed by two different cell types. Bifurcated and Z-configured device geometries were evaluated for cell selection. As an example of the performance of these devices, CD4+ T-cells and neutrophils were selected from whole blood as these cells are known to express genes found in stroke-related expression profiles that can be used for the diagnosis of this disease. CD4+ T-cells and neutrophils were simultaneously isolated with purities >90% using affinity-based capture in cyclic olefin copolymer (COC) devices with a processing time of ∼3 min. In addition, sufficient quantities of the cells could be recovered from a 50 μL whole blood input to allow for reverse transcription-polymerase chain reaction (RT-PCR) following cell lysis. The expression of genes from isolated T-cells and neutrophils, such as S100A9, TCRB, and FPR1, was evaluated using RT-PCR. The modification and isolation procedures demonstrated here can also be used to analyze other cell types as well where multiple subsets must be interrogated

    Discrete microfluidics for the isolation of circulating tumor cell subpopulations targeting fibroblast activation protein alpha and epithelial cell adhesion molecule

    Get PDF
    Circulating tumor cells consist of phenotypically distinct subpopulations that originate from the tumor microenvironment. We report a circulating tumor cell dual selection assay that uses discrete microfluidics to select circulating tumor cell subpopulations from a single blood sample; circulating tumor cells expressing the established marker epithelial cell adhesion molecule and a new marker, fibroblast activation protein alpha, were evaluated. Both circulating tumor cell subpopulations were detected in metastatic ovarian, colorectal, prostate, breast, and pancreatic cancer patients and 90% of the isolated circulating tumor cells did not co-express both antigens. Clinical sensitivities of 100% showed substantial improvement compared to epithelial cell adhesion molecule selection alone. Owing to high purity (>80%) of the selected circulating tumor cells, molecular analysis of both circulating tumor cell subpopulations was carried out in bulk, including next generation sequencing, mutation analysis, and gene expression. Results suggested fibroblast activation protein alpha and epithelial cell adhesion molecule circulating tumor cells are distinct subpopulations and the use of these in concert can provide information needed to navigate through cancer disease management challenges

    A novel mutation (Cys308Phe) of the LDL receptor gene in families from the South-Eastern part of Poland

    Get PDF
    The purpose of this investigation was to characterize a new mutation in the LDL-receptor (LDLR) gene in three families with clinically diagnosed familial hypercholesterolemia (FH) from the South-Eastern part of Poland. Mutational screening with exon by exon sequencing analysis was performed in all probands. The novel mutation c986G>T (Cys308Phe) in the exon 7 of LDLR gene was found in three apparently unrelated probands with FH. Analysis of the receptor activity of peripheral blood lymphocytes by binding and uptake of DiL-LDL showed a significant reduction (by 24% versus healthy control) of the fluorescent label in the lymphocytes of patients heterozygous for this mutation. Concentrations of serum LDL-C in probands before treatment were between 9.5 and 10.5 mmol/l. All patients had corneal arcus and tendon xanthoma. Clinically, families were characterized by premature coronary artery disease. This mutation occurred relatively frequently in our group of patients with FH, but this could be explained by a founder effect since we demonstrated their common ancestors

    UV activation of polymeric high aspect ratio microstructures: Ramifications in antibody surface loading for circulating tumor cell selection

    Get PDF
    The need to activate thermoplastic surfaces using robust and efficient methods has been driven by the fact that replication techniques can be used to produce microfluidic devices in a high production mode and at low cost, making polymer microfluidics invaluable for in vitro diagnostics, such as circulating tumor cell (CTC) analysis, where device disposability is critical to mitigate artifacts associated with sample carryover. Modifying the surface chemistry of thermoplastic devices through activation techniques can be used to increase the wettability of the surface or to produce functional scaffolds to allow for the covalent attachment of biologics, such as antibodies for CTC recognition. Extensive surface characterization tools were used to investigate UV activation of various surfaces to produce uniform and high surface coverage of functional groups, such as carboxylic acids in microchannels of different aspect ratios. We found that the efficiency of the UV activation process is highly dependent on the microchannel aspect ratio and the identity of the thermoplastic substrate. Colorimetric assays and fluorescence imaging of UV-activated microchannels following EDC/NHS coupling of Cy3-labeled oligonucleotides indicated that UV-activation of a PMMA microchannel with an aspect ratio of ???3 was significantly less efficient toward the bottom of the channel compared to the upper sections. This effect was a consequence of the bulk polymer's damping of the modifying UV radiation due to absorption artifacts. In contrast, this effect was less pronounced for COC. Moreover, we observed that after thermal fusion bonding of the device's cover plate to the substrate, many of the generated functional groups buried into the bulk rendering them inaccessible. The propensity of this surface reorganization was found to be higher for PMMA compared to COC. As an example of the effects of material and microchannel aspect ratios on device functionality, thermoplastic devices for the selection of CTCs from whole blood were evaluated, which required the immobilization of monoclonal antibodies to channel walls. From our results, we concluded the CTC yield and purity of isolated CTCs were dependent on the substrate material with COC producing the highest clinical yields for CTCs as well as better purities compared to PMMA.close9
    corecore